2024 Virginia 4-H Dairy Quiz Bowl Materials #### Prepared by: David R. Winston Extension Dairy Scientist, Youth School of Animal Sciences Litton Reaves Hall, Room 2050, Virginia Tech 175 West Campus Drive Blacksburg, VA 24061 (540) 231-5693 dwinston@vt.edu Virginia Cooperative Extension is a partnership of Virginia Tech, Virginia State University, the U.S. Department of Agriculture, and local governments. Its programs and employment are open to all, regardless of age, color, disability, gender, gender identity, gender expression, national origin, political affiliation, race, religion, sexual orientation, genetic information, military status, or any other basis protected by law. ### **Table of Contents** | Chapter 1: Dates in Dairy History* | 3 | |---|----| | Chapter 2: Agencies, Organizations, and Leaders* | 6 | | Chapter 3: Dairy Breeds* | 10 | | Chapter 4: Dairy Cattle Judging, Fitting and Showing* | 13 | | Chapter 5: Calf and Heifer Management* | 17 | | Chapter 6: Nutrition, Feeds and Feeding* | 21 | | Chapter 7: Lactation and Milking Management* | 32 | | Chapter 8: Milk and Dairy Products* | 40 | | Chapter 9: Milk Marketing* | 45 | | Chapter 10: Reproduction | 49 | | Chapter 11: Genetics | 56 | | Chapter 12: Animal Health | 62 | | Chapter 13: Nutrient Management | 73 | | Chapter 14: Dairy Goats* | 77 | | Chapter 15: Miscellaneous* | 79 | #### Note Senior 4-H members competing in district and state 4-H dairy quiz bowl contests in Virginia may be quizzed on any of the information contained within this year's study materials. Junior 4-H members will only be responsible for those marked with an asterisk (Chapters 1to 9, 14, and 15). #### **Disclaimer** This publication is a living document and is updated on an annual basis. Given the pace of change in today's world, information can become dated very quickly. If you find information that has changed, feel free to contact the editor, so your suggestions may be included in the next revision. Thank you! ## **Chapter 1: Dates in Dairy History** | Year | Event | |------|---| | 1611 | First cows arrived at the Jamestown Colony | | 1624 | First cows arrived at the Plymouth Colony | | 1810 | First dairy cooperative in the U.S. organized in Goshen, Connecticut | | 1851 | First commercial cheese factory established in New York | | 1856 | First patent for condensed milk First commercial butter factory established in New York | | 1857 | First successful condensery built by Gail Borden in Burrville, Connecticut | | 1862 | Morrill Act enacted (created the Land Grant College System) | | 1868 | American Jersey Cattle Club founded | | 1877 | American Guernsey Cattle Club founded | | 1878 | Centrifugal cream separator invented by Dr. Gustaf de Laval | | 1880 | Brown Swiss Breeders Association founded | | 1884 | Milk bottle invented by Dr. Harvey Thatcher in Potsdam, NY | | 1885 | Hoard's Dairyman magazine first published Holstein-Friesian Association of America formed | | 1886 | Automatic bottle filler and capper patented | | 1887 | Hatch Act enacted (created state agricultural experiment stations) | | 1890 | Babcock test for butterfat developed | | 1895 | Pulsator invented | | 1904 | American Dairy Goat Association organized | | 1905 | First cow testing association in the U.S. organized in Michigan | | 1906 | American Dairy Science Association founded First National Dairy Show held in Chicago Brown Swiss cattle recognized as an official dairy breed in the U.S. | | 1906 | National Dairy Council organized | | 1914 | Smith-Lever Act signed (established the Cooperative Extension Service) | | 1916 | National Milk Producers Federation founded | | 1917 | Journal of Dairy Science first published | | 1922 | Capper-Volstead Act passed (empowered farmers and agricultural producers to market, price, and sell their products through cooperative means) | | 1927 | Cow Testing Association renamed Dairy Herd Improvement Association (DHIA) | | 1931 | Hoard's Dairyman cow judging contest begun | | 1932 First plastic-coated paper milk cartons introduced commercially 1935 National Cooperative Sire Proving Program initiated 1936 First dairy cattle A.I. organization in Denmark First list of sires proven in DHIA testing published by USDA 1937 Federal Agricultural Marketing Agreement Act passed establishing federal milk marketing orders Artificial insemination began in the U.S. 1938 First A.I. cooperative in the U.S. organized in New Jersey by E. J. Perry First bulk tanks used on farms 1940 American Dairy Association founded Purebred Dairy Cattle Association formed 1942 National Association of Animal Breeders organized 1943 PDCA Dairy Cow Unified Scorecard was first copyrighted 1945 First edition of National Research Council's Nutrient Requirements of Dairy Cattle published 1949 National Dairy Shrine founded Computer first used to calculate DHIA records in Utah First U.S. young sire sampling program established First successful embryo transfer in dairy cattle First commercial milk replacer for calves introduced 1953 Frosty, the first U.S. calf resulting from frozen semen, was born 1955 Flavor control equipment introduced commercially 1960 National Mastitis Council founded 1964 Commercial introduction of plastic milk jug Red and White Dairy Cattle Association organized | |---| | First dairy cattle A.I. organization in Denmark First list of sires proven in DHIA testing published by USDA Federal Agricultural Marketing Agreement Act passed establishing federal milk marketing orders Artificial insemination began in the U.S. First A.I. cooperative in the U.S. organized in New Jersey by E. J. Perry First bulk tanks used on farms American Dairy Association founded Purebred Dairy Cattle Association formed 1940 National Association of Animal Breeders organized 1941 PDCA Dairy Cow Unified Scorecard was first copyrighted 1943 PDCA Dairy Cow Unified Scorecard was first copyrighted 1944 National Dairy Shrine founded Computer first used to calculate DHIA records in Utah First U.S. young sire sampling program established First successful embryo transfer in dairy cattle First successful embryo transfer in dairy cattle First commercial milk replacer for calves introduced 1953 Frosty, the first U.S. calf resulting from frozen semen, was born 1955 Flavor control equipment introduced commercially 1960 National Mastitis Council founded Commercial introduction of plastic milk jug Red and White Dairy Cattle Association organized | | First list of sires proven in DHIA testing published by USDA Federal Agricultural Marketing Agreement Act passed establishing federal milk marketing orders Artificial insemination began in the U.S. First A.I. cooperative in the U.S. organized in New Jersey by E. J. Perry First bulk tanks used on farms American Dairy Association founded Purebred Dairy Cattle Association formed 1942 National Association of Animal Breeders organized 1943 PDCA Dairy Cow Unified Scorecard was first copyrighted 1945 First edition of National Research Council's Nutrient Requirements of Dairy Cattle published 1949 National Dairy Shrine founded Computer first used to calculate DHIA records in Utah First U.S. young sire sampling program established First successful embryo transfer in dairy cattle First commercial milk replacer for calves introduced 1953 Frosty, the first U.S. calf resulting from frozen semen, was born 1955 Flavor control equipment introduced commercially National Mastitis Council founded Commercial introduction of plastic milk jug Red and White Dairy Cattle Association organized | | Federal Agricultural Marketing Agreement Act passed establishing federal milk marketing orders Artificial insemination began in the U.S. First A.I. cooperative in the U.S. organized in New Jersey by E. J. Perry First bulk tanks used on farms American Dairy Association founded Purebred Dairy Cattle Association formed 1942 National Association of Animal Breeders organized 1943 PDCA Dairy Cow Unified Scorecard was first copyrighted 1945 First edition of National Research Council's Nutrient Requirements of Dairy Cattle published 1949 National Dairy Shrine founded Computer first used to calculate DHIA records in Utah First U.S. young sire sampling program established First successful embryo transfer in dairy cattle First commercial milk replacer for calves introduced 1953 Frosty, the first U.S. calf resulting from frozen semen, was born 1955 Flavor control equipment introduced commercially National Mastitis Council founded Commercial introduction of plastic milk jug
Red and White Dairy Cattle Association organized | | First A.I. cooperative in the U.S. organized in New Jersey by E. J. Perry First bulk tanks used on farms American Dairy Association founded Purebred Dairy Cattle Association formed 1942 National Association of Animal Breeders organized 1943 PDCA Dairy Cow Unified Scorecard was first copyrighted 1945 First edition of National Research Council's Nutrient Requirements of Dairy Cattle published 1949 National Dairy Shrine founded Computer first used to calculate DHIA records in Utah First U.S. young sire sampling program established First successful embryo transfer in dairy cattle First commercial milk replacer for calves introduced 1953 Frosty, the first U.S. calf resulting from frozen semen, was born 1955 Flavor control equipment introduced commercially 1960 National Mastitis Council founded Commercial introduction of plastic milk jug Red and White Dairy Cattle Association organized | | Purebred Dairy Cattle Association formed 1942 National Association of Animal Breeders organized 1943 PDCA Dairy Cow Unified Scorecard was first copyrighted 1945 First edition of National Research Council's Nutrient Requirements of Dairy Cattle published 1949 National Dairy Shrine founded Computer first used to calculate DHIA records in Utah First U.S. young sire sampling program established First successful embryo transfer in dairy cattle First commercial milk replacer for calves introduced 1953 Frosty, the first U.S. calf resulting from frozen semen, was born 1955 Flavor control equipment introduced commercially 1960 National Mastitis Council founded Commercial introduction of plastic milk jug Red and White Dairy Cattle Association organized | | PDCA Dairy Cow Unified Scorecard was first copyrighted First edition of National Research Council's Nutrient Requirements of Dairy Cattle published National Dairy Shrine founded Computer first used to calculate DHIA records in Utah First U.S. young sire sampling program established First successful embryo transfer in dairy cattle First commercial milk replacer for calves introduced Frosty, the first U.S. calf resulting from frozen semen, was born Flavor control equipment introduced commercially National Mastitis Council founded Commercial introduction of plastic milk jug Red and White Dairy Cattle Association organized | | 1945 First edition of National Research Council's Nutrient Requirements of Dairy Cattle published 1949 National Dairy Shrine founded Computer first used to calculate DHIA records in Utah First U.S. young sire sampling program established First successful embryo transfer in dairy cattle First commercial milk replacer for calves introduced 1953 Frosty, the first U.S. calf resulting from frozen semen, was born 1955 Flavor control equipment introduced commercially 1960 National Mastitis Council founded Commercial introduction of plastic milk jug Red and White Dairy Cattle Association organized | | 1949 National Dairy Shrine founded Computer first used to calculate DHIA records in Utah First U.S. young sire sampling program established First successful embryo transfer in dairy cattle First commercial milk replacer for calves introduced 1953 Frosty, the first U.S. calf resulting from frozen semen, was born 1955 Flavor control equipment introduced commercially 1960 National Mastitis Council founded Commercial introduction of plastic milk jug Red and White Dairy Cattle Association organized | | Computer first used to calculate DHIA records in Utah First U.S. young sire sampling program established First successful embryo transfer in dairy cattle First commercial milk replacer for calves introduced 1953 Frosty, the first U.S. calf resulting from frozen semen, was born 1955 Flavor control equipment introduced commercially 1960 National Mastitis Council founded Commercial introduction of plastic milk jug Red and White Dairy Cattle Association organized | | First U.S. young sire sampling program established First successful embryo transfer in dairy cattle First commercial milk replacer for calves introduced 1953 Frosty, the first U.S. calf resulting from frozen semen, was born 1955 Flavor control equipment introduced commercially 1960 National Mastitis Council founded Commercial introduction of plastic milk jug Red and White Dairy Cattle Association organized | | 1955 Flavor control equipment introduced commercially 1960 National Mastitis Council founded 1964 Commercial introduction of plastic milk jug Red and White Dairy Cattle Association organized | | 1960 National Mastitis Council founded 1964 Commercial introduction of plastic milk jug Red and White Dairy Cattle Association organized | | Commercial introduction of plastic milk jug Red and White Dairy Cattle Association organized | | Red and White Dairy Cattle Association organized | | 1965 National Dairy Herd Information Association organized | | | | 1967 World Dairy Expo founded and held first show | | 1974 Nutrition labeling of fluid milk products begins | | INTERBULL developed 1983 Dairy and Tobacco Adjustment Act passed (created National Dairy Promotion and Research Board and a 15-cent dairy check-off) | | 1989 Animal Model first used for USDA genetic evaluations | | 1993 Bovine somatotropin, first product of biotechnology for animals, approved | | 1994 Holstein-Friesian Association officially changes its name to Holstein Association USA, Inc. | | 1995 Multi-trait Across Country Evaluations (MACE) for bulls implemented by INTERBULL | | 1998 Dairy Calf and Heifer Association founded | | Year | Event | |------|---| | 2000 | First U.S. commercial robotic milker installed in Wisconsin | | 2002 | North American Intercollegiate Dairy Challenge established | | 2003 | Sexed semen becomes commercially available | | 2006 | Dairy Cattle Reproductive Council founded | | 2009 | Most recent revision of the PDCA Dairy Cow Unified Scorecard Genomic predictions of genetic merit officially released by USDA-AIPL Jersey Youth Academy established | | 2013 | Council on Dairy Cattle Breeding assumes responsibility for publishing U.S. dairy genetic evaluations | | 2016 | PDCA Showmanship Evaluation Card revised | | 2021 | Eighth revised edition of the Nutrient Requirements of Dairy Cattle published | | 2023 | Dairy Calf and Heifer Association published 4 th edition of DCHA's Gold Standards | # **Chapter 2: Agencies, Organizations, and Leaders** ## **ACRONYMS** | ADA | American Dairy Association | |-------|---| | ADGA | American Dairy Goat Association | | ADSA | American Dairy Science Association | | AFBF | American Farm Bureau Federation | | AJCA | American Jersey Cattle Association | | AMS | Agricultural Marketing Service (USDA) | | AOAC | American Organization of Analytical Chemists | | APHIS | Animal and Plant Health Inspection Service (USDA) | | ARS | Agricultural Research Service (USDA) | | CCC | Commodity Credit Corporation | | CME | Chicago Mercantile Exchange | | CSS | Certified Semen Services | | DCHA | Dairy Calf and Heifer Association | | DCRC | Dairy Cattle Reproduction Council | | DHIA | Dairy Herd Information Association | | DHIR | Dairy Herd Information Registry | | DRPC | Dairy Records Processing Center | | EPA | Environmental Protection Agency | | FAS | Foreign Agricultural Service (USDA) | | FASS | Federation of Animal Science Societies | | FCS | Farm Credit Services | | FDA | Food and Drug Administration | | FSA | Farm Service Agency (USDA) | | FSIS | Food Safety and Inspection Service (USDA) | | IDF | International Dairy Federation | | IDFA | International Dairy Foods Association | | IMS | Interstate Milk Shippers | | NAAB | National Association of Animal Breeders | | NADC | National Animal Disease Center | | NAIDC | North American Intercollegiate Dairy Challenge | | NASS | National Agricultural Statistics Service (USDA) | | NCIMS | National Conference on Interstate Milk Shipments | |-------|---| | NDC | National Dairy Council | | NDHIA | | | NDPRB | | | NIFA | National Institute of Food and Agriculture (USDA) | | NMC | | | NMPF | National Milk Producers Federation | | NRC | National Research Council | | NRCS | Natural Resource Conservation Service (USDA) | | PDCA | Purebred Dairy Cattle Association | | SWCD | Soil and Water Conservation District | | UDIA | United Dairy Industry Association | | USDA | United States Department of Agriculture | | USDEC | United States Dairy Export Council | | YDLI | Young Dairy Leaders Institute | #### **DAIRY INDUSTRY PIONEERS** S. M. Babcock developed the butterfat test that was the basis for DHIA testing. Gail Borden received the first patent for condensed milk - Dr. Gustaf de Laval invented the centrifugal cream separator. - W. D. Hoard founded Hoard's Dairyman, the national dairy farm magazine. Louis Pasteur invented pasteurization: considered the first person to discover that bacteria cause food spoilage and disease. Dr. Harvey Thatcher invented the milk bottle. #### **DAIRY INDUSTRY LEADERS** | Gregg Doud | President and CEO of the National Milk Producers Federation | |-----------------|--| | Jay Mattison | CEO of National DHIA | | Jerry Bowman | Executive Director of the American Dairy Science Association | | Abby Bauer | Managing Editor of Hoard's Dairyman | | Walt Cooley | Managing Editor of Progressive Dairy | | Mike Opperman | Executive Director of National Dairy Shrine | | Laura Herschleb | General Manager, World Dairy Expo | | Barbara O'Brien | CEO of Dairy Management, Inc. | #### **AGRICULTURAL LEADERS IN GOVERNMENT** | Tom Vilsack | U.S. Secretary of Agriculture | |-----------------------------|---| | Sen. Debbie Stabenow (D-MI) |) Chair, U.S. Senate
Agriculture, Nutrition, & Forestry Committee | | Rep. Glenn Thompson (R-PA) |) | #### **BREED ASSOCIATION LEADERS** | Becky Payne | Executive Director, U.S. Ayrshire Breeders Association | |------------------|---| | Norman Magnussen | Executive Secretary, Brown Swiss Cattle Breeders Association | | Robin Alden | Executive Secretary, American Guernsey Association | | John Meyer | CEO/Executive Secretary, Holstein Association USA, Inc | | Neal Smith | Executive Secretary and CEO, American Jersey Cattle Association | | Kate Gulley | Executive Secretary, American Milking Shorthorn Society | | Nicholas Randle | President of the Red & White Dairy Cattle Association | #### DAIRY RELATED ORGANIZATIONS The mission of National All-Jersey, Inc. is to increase the value of and demand for Jersey milk and to promote equity in milk pricing. The Holstein Foundation's education, leadership development, and outreach programs serve youth and young adults representing all breeds of dairy cattle. The Council on Dairy Cattle Breeding oversees approval of records systems standards. The council appoints the group to certify performance of DHI's and other herd record providers. The four Dairy Records Processing Centers (DRPC's) in the U.S. are: - AgriTech Analytics - AgSource Cooperative Services - Amelicor - Dairy Records Management Systems Dairy Farmers of America (DFA) is the largest dairy cooperative in the U.S. Dairy Farmers of America, Inc. is the largest processor and distributor of milk and dairy products in the U.S. Lactalis is the top dairy company in the world based on dairy sales. The company's headquarters is in France. Danone is the world's largest yogurt maker. Fonterra Co-operative Group Ltd. in New Zealand is the world's largest private exporter of dairy products. Futures and/or options are traded daily at the Chicago Mercantile Exchange for the following dairy commodities: - Butter - Cheese - Dry whey - Milk - Nonfat dry milk Dairy Management, Inc. (DMI) is a nonprofit organization co-funded by the National Dairy Board and United Dairy Industry Association. - DMI conducts programs in integrated marketing, communications, promotion, and research for U.S. dairy farmers. - DMI manages the National Dairy Council and the American Dairy Association. - DMI also founded the U.S. Dairy Export Council and the Innovation Center for U.S. Dairy. The American Dairy Science Association (ADSA) is an international organization of educators, scientists, and industry representatives who are committed to advancing the dairy industry. - The Journal of Dairy Science is the organization's official scientific publication. - ADSA has two divisions in its organizational structure Production and Dairy Foods. The National Dairy Shrine Museum is in Fort Atkinson, Wisconsin. #### **ORGANIZATION HEADQUARTERS** | American Dairy Science Association | Champaign, Illinois | |---|----------------------------------| | Council on Dairy Cattle Breeding | Bowie, Maryland | | Dairy Calf and Heifer Association | New Prague, Minnesota | | Dairy Cattle Reproduction Council | New Prague, Minnesota | | Hoard's Dairyman | Fort Atkinson, Wisconsin | | Milk and Dairy Beef Quality Assurance Center | Stratford, lowa | | National Dairy Shrine | Fort Atkinson, Wisconsin | | National DHIA | Fitchburg, Wisconsin | | National Milk Producers Federation | Arlington, Virginia | | EVENT LOCATIONS | | | All-American Dairy Show | Harrisburg, Pennsylvania | | Eastern States Exposition (The Big E) | .West Springfield, Massachusetts | | National 4-H Dairy Conference | Madison, Wisconsin | | North American International Livestock Exposition | Louisville, Kentucky | | World Dairy Expo | Madison, Wisconsin | ## **Chapter 3: Dairy Breeds** The seven major breeds recognized by the Purebred Dairy Cattle Association are Ayrshire, Brown Swiss, Guernsey, Holstein, Jersey, Milking Shorthorn, and Red & White. #### **AYRSHIRE** | Place of origin | County of Ayr, Scotland | |--|--| | Arrived in the United States | 1822 | | Mature bodyweight | 1,200 lb. | | Permanent ID method | Official tattoo or American ID tag | | Association name | U.S. Ayrshire Breeders Association | | Association headquarters | Columbus, Ohio | | Breed magazine | Ayrshire Digest | | BROWN SWISS | | | Place of origin | Switzerland | | Arrived in the United States | 1869 | | Mature bodyweight | 1,400 lb. | | Permanent ID method | Ear tattoo or official AIN eartag | | Association nameBrow | wn Swiss Cattle Breeders' Association | | Association headquarters | Beloit, Wisconsin | | Breed magazine | Brown Swiss Bulletin | | Brown Swiss cattle were originally used for milk, meat, and d | raft purposes. | | Today's Brown Swiss cattle are known for high protein to fat and having few health problems. | ratio, longevity, sound feet and legs, | | GUERNSEY | | | Place of origin | Isle of Guernsey | | Arrived in the United States | 1840 | | Mature bodyweight | 1,250 lb. | | Permanent ID method | RFID tag, photo, sketch, or ear tattoo | | Association name | American Guernsey Association | Guernsey milk is known for its golden color. ## HOLSTEIN | HOLSTEIN | | |---|---| | Place of origin | Netherlands and Germany | | Arrived in the United States | | | Mature bodyweight | | | Permanent ID method | Eartag ID, photo, or sketch | | Association name | Holstein Association USA, Inc. | | Association headquarters | Brattleboro, Vermont | | Breed magazine | The Pulse | | Holsteins make up about 90% of the U.S. dairy of | cow population. | | The three colors found in registered Holstein cat | tle are black, red, and white. | | On average, Holsteins produce more milk per co | w than the other dairy cattle breeds. | | JERSEY | | | Place of origin | Isle of Jersey | | Arrived in the United States | 1850s | | Mature bodyweight | | | Permanent ID method | Approved eartag or legible tattoo | | Association name | American Jersey Cattle Association | | Association headquarters | Reynoldsburg, Ohio | | Breed magazine | Jersey Journal | | Jerseys generally produce milk with the highest | at and protein content. | | MILKING SHORTHORN | | | Place of origin | England | | Arrived in the United States | | | Mature bodyweight | | | Permanent ID methodE | ar tattoo, RFID tag, laser printed tag, or button tag | | Association name | American Milking Shorthorn Association | | Association headquarters | Beloit, Wisconsin | | Breed magazine | Milking Shorthorn Journal | | RED & WHITE | | | Association name | Red and White Dairy Cattle Association | | Association headquarters | | | Breed magazine | The Red Bloodlines | | The Red and White Dairy Cattle Association has
The organization allows different breeds in their I | an open herdbook with different levels of registry. nerdbook, not just red and white Holsteins. | ## **NOTABLE ANIMALS** | Brown Swiss milk production leader | Lost Elm Prelude Pixy ET (65,430 lb. | |--|---| | Holstein milk production leader | Selz-Pralle Aftershock 3918 (78,170 lb. | | Jersey milk production leader | Mainstream Barkly Jubilee (55,590 lb. | | World lifetime milk production record holder | Gillette E Smur | | Queen Mother of the Brown Swiss breed | Jane of Vernor | | First bull to produce one million units of semen | Fisher-Place Mandingo-TW | | 2023 Supreme Champion of World Dairy Expo | Erbacres Snapple Shakira - ET (Holstein | ## **Chapter 4: Dairy Cattle Judging, Fitting and Showing** #### PDCA DAIRY COW UNIFIED SCORECARD | Category | Points | Traits in Priority Order | |--------------------|--------|---| | Frame | 15 | Rump, front end, back/loin, stature, breed characteristics | | Dairy Strength | 25 | Ribs, chest, barrel, thighs, neck, withers, skin | | Rear Feet and Legs | 20 | Movement, rear legs - side view, rear legs - rear view, feet, thurl position, hocks, bone, pasterns | | Udder | 40 | Udder depth, rear udder, teat placement, udder cleft, fore udder, teats, udder balance and texture | #### **DAIRY HEIFER SCORECARD (Unofficial)** | Category | Points | |----------------------|--------| | Frame | 40 | | Dairy Strength | 20 | | Feet and Legs | 30 | | Body Capacity | 10 | #### **FINAL CLASSIFICATION SCORES** | Brown Swiss | | Holstein | | Jersey | | |----------------|-------|----------------|-------|----------------|-------| | Classification | Score | Classification | Score | Classification | Score | | Excellent | 90-95 | Excellent | 90-97 | Excellent | 90 + | | Very Good | 85-89 | Very Good | 85-89 | Very Good | 80-89 | | Good Plus | 80-84 | Good Plus | 80-84 | Desirable | 70-79 | | Good | 75-79 | Good | 75-79 | Acceptable | 60-69 | | Fair | 65-74 | Fair | 65-74 | Poor | 50-59 | | Poor | 60-64 | Poor | 60-64 | | | #### **ANATOMY RELATED TO JUDGING** The hock is used as the reference point to determine the height of the udder floor. The parts of a cow's anatomy that may be twisted to one side and called "wry" are the face and tail. The main udder supports are the median suspensory ligament, lateral suspensory ligament, and skin. The median suspensory ligament is the major support of the udder and divides it in half when viewed from the rear. The subcutaneous abdominal veins are also called the milk veins. #### **JUDGING CONTESTS** The Hoard's Dairyman Cow Judging Contest consists of 5 picture classes. The contest begins with the January 10 issue each year. The National 4-H Dairy Cattle Judging Contest is held
at the World Dairy Expo in Madison, Wisconsin. There are four animals in a class in a 4-H dairy judging contest. The All-American Invitational Youth Dairy Cattle Judging Contest is held at the All-American Dairy Show in Harrisburg, Pennsylvania. The (NAILE) Invitational Youth Dairy Judging Contest is held at the North American International Livestock Exposition in Louisville, Kentucky. #### **HEIFER CLASSES** The individual heifer classes in a dairy show are: - Spring heifer calf - Winter heifer calf - Fall heifer calf - Summer yearling heifer - Spring yearling heifer - Winter yearling heifer - Fall yearling heifer #### **SHOWMANSHIP** When exhibiting a dairy animal, the parading circle before the judge should move clockwise. When showing a dairy heifer, the rear leg nearest the judge should be placed farther back than the other. When showing a dairy cow, the rear leg nearest the judge should be placed farther forward than the other. One should lead a dairy animal from the left side of the animal when viewed from the rear. #### **SHOW ETHICS** A dairy animal can be disqualified from being shown in the show ring for the following reasons: - Blind quarter - Permanent lameness - Total blindness - Freemartin heifer - Tampering to conceal faults Ohio was the first state to make tampering with show cows a crime. #### YOUTH FOR THE QUALITY CARE OF ANIMALS (YQCA) YQCA is a national multi-species quality assurance program for youth ages 8 to 21 with a focus on three core pillars: - Food safety - Animal well-being - Character development #### PDCA SHOWMANSHIP EVALUATION CARD #### **Slight Discriminations** #### **Exhibitor** - Inappropriate halter - Lead strap tightly looped - Walks slowly backward into the ring - Sidesteps when leading calf - Has stiff outstretched arm - Has poor posture either overly stiff or slumped, sloppy - Improper head carriage, animal's nose is too high - Calf's head is not turned slightly toward judge when hide is felt - Stepping on or kicking at the animal's front feet - Inappropriate size of calf for competitor #### **Animal** - Minor instances of animal not handled well - Is not alert - Muzzle is not wiped clean - Switch is not brushed and fluffed - Clipping lines not properly blended #### **Moderate Discriminations** #### **Exhibitor** - Not wearing white clothing or show-approved professional attire - Inappropriate or unprofessional attire that draws attention to the exhibitor - Wearing clothing with farm or commercial advertising/logos - Does not know birth date, fresh date, breeding date, due date - Unable to recognize type faults of the animal - Halter not fitting or put together properly - Holding the lead strap too far from the halter - Has fingers in ring of the halter - Failure to hold throat when needed - Improper head carriage, animal's head held too low - Unable to show animal to best advantage - Slow response to judge or ring official - Inattentiveness - Watching the judge too intently - Over-showing - Leading too slowly - Has elbow or hands up - Is too far to outside or inside of ring - Incorrect spacing to the animal in front when on parade - Failure to switch rear legs when the judge moves around the animal - Doesn't walk quickly into line - Crowding or bumping other animals when pulled in line - Leaving extra space in line - Failure to maintain a straight lineup - Moves excessively in line - Unable to back up animal - Legs incorrectly posed - Does not keep animal straight from head to tail - Chewing gum #### Animal - · Legs not clipped - Dirt/dust in hair coat - Dirt/wax in ears - Feet not cleaned - Excessive use of hair sprays, powder and other fitting products - Clipping too early; hair appears too long - Incomplete clipping - Excessive clipping #### **Severe Discriminations** #### **Exhibitor** - Lead strap looped & fastened - Striking the animal - Positioning animal's rear legs by stepping on rear feet - Fusses with or moves calf to the extreme - Minor instances of unsportsmanlike conduct - Is late to class - Wearing inappropriate shoes - Chewing tobacco - Carries or talks on a cell phone #### Animal Animal causing disturbances to others #### **Disqualifications** - Violations of PDCA Show Ring Code of Ethics - Unsportsmanlike conduct - Repeated striking of the animal #### **Recommendation for Evaluation of the Topline** #### Topline is: - Groomed - Does not distract from the animal's overall appearance - Conforms to the guidelines of the PDCA Show Ring Code of Ethics ## **Chapter 5: Calf and Heifer Management** #### **ACRONYMS** | ADG | Average daily gain | |-----|-----------------------------| | AFC | Age at first calving | | FPT | Failure of passive transfer | #### DEFINITIONS **Cold calf housing** – Housing in which the temperature varies with the outside temperature **Colostrum** – First milk secreted after calving **Compensatory growth** – Term used to describe a period of increased growth rate that follows a growth restriction imposed earlier in the heifer's life **Completion rate** – Percentage of heifer calves that successfully reach maturity and enter the milking herd Transition milk - Milk harvested from the second, third, and fourth milking after calving Warm calf housing - Housing in which environmental temperature is controlled **Weaning** – Act of taking a young animal off milk as the main source of nutrition #### **ECONOMICS** Heifers account for 15 to 20 percent of total farm expenses on many dairy operations. Feed costs account for 55 to 60 percent of the total cost of raising dairy replacement heifers. #### PROJECT SELECTION Important points to consider when selecting a calf as a project animal include: - Age - Breed - Health - Pedigree - Conformation #### **IDENTIFICATION** Methods commonly used to identify calves include: - Eartag - Photo - Sketch - Tattoo - Freeze branding #### LIQUID DIET Liquid diet choices for pre-weaned calves include milk replacer, whole milk, and colostrum. A pre-weaned calf should be fed 10-17 percent of its body weight in milk or milk replacer daily. When a calf nurses, milk travels through the esophageal groove to the omasum and abomasum. It bypasses the rumen and reticulum. In a newborn calf, the reticulum and rumen are not yet fully developed. #### COLOSTRUM Colostrum contains antibodies that provide immunity from disease for calves. It contains a higher level of protein than normal milk. A newborn calf should be fed colostrum at an amount equal to 10 percent of the calf's bodyweight within the first two hours of life. If colostrum is pasteurized, it should be heated to 140°F for 60 minutes. Critical factors in colostrum management are quantity, quality, timing, and cleanliness. Storage options for excess colostrum are: - Add preservative acid - Fermented Frozen Refrigerated Frozen colostrum may be safely stored for a year. The Brix refractometer and colostrometer are on-farm tools for estimating colostrum quality. Conditions that can result in poor quality colostrum include: - Cows is dry less than 3-4 weeks - Pre-milking - Leaking teats - Dirty udder and teats - Young cow #### **MILK REPLACER** Conventional milk replacer should contain 20% crude protein and 20% fat. Accelerated milk replacer should contain 26-30% crude protein and 15-25% fat. Recommended protein sources for milk replacers are: - Casein - Modified wheat protein - Dried skim milk - Protein modified soy flour - Dried whey - Soy protein concentrate - Dried whey product - Soy protein isolate - Dried whey protein concentrate #### **WEANING** Grain intake should be the main criterion used for deciding when to wean a calf. Before weaning a calf should eat at least 2-3 pounds of grain per day for three consecutive days. #### **CALF STARTER** Calf starter should contain 18-22% crude protein. There are several types of calf starters available. They are: - Commercial textured calf starters - Homemade grind and mix starters - Commercial pelleted starters #### **CALF HOUSING** Calf housing should be clean, dry, draft-free and well ventilated. Systems of calf housing include: - Calf hutch - Pens on the floor - Counter-slope system - Elevated stalls - Cold calf housing system Advantages of calf hutches include: - They are easily moved - They provide better ventilation - They prevent disease from spreading from one calf to another #### **GROWTH** Calves should at least double their birth weight by 8 weeks of age. Average daily gain (ADG) is a significant factor in monitoring growth rates in dairy heifers. Body size is the most important factor to consider in determining when to breed a heifer for the first time. Heifers usually show heats at 40% of mature bodyweight. They should start being bred at 55% of mature bodyweight and calve for the first time at approximately 82% of mature bodyweight. #### **CALF HEALTH** The leading causes of death in young calves are scours and pneumonia. The major causes of calf scours include: - Inadequate colostrum - Overfeeding - Overcrowding - Poor quality colostrum - Poor quality milk replacer - Inadequate ventilation - Unsanitary calving conditions Physical factors contributing to pneumonia in calves are drafts, chilling, dampness, and poor ventilation. A farmer might ultrasound a calf's lungs to detect pneumonia. Places where pathogenic organisms may enter a newborn calf's body are the mouth, navel, and nose. Signs of illnesses in calves include: - Poor appetite - Nasal discharge - Lack of energy - Cough - Drooping ears - Elevated temperature - Watery manure - Dull eyes Either a 7% iodine solution or a 1:1 mixture of chlorhexidine and 70% alcohol should be applied on the calf's navel within 30 minutes after birth to seal the entrance from disease causing organisms. A calf is 2 to 3 weeks old when it begins to chew its cud. Calves should be dehorned at about three weeks of age. Methods of dehorning calves are: - Dehorning paste - Cutting or gouging (Barnes type dehorner) - Electric Extra teats are also known as supernumerary teats.
Between 30 and 40 percent of heifers born have extra teats. They should be surgically removed around 4 months of age. #### **CUSTOM HEIFER REARING** Custom heifer growing offers several advantages to dairy producers who have been raising their own replacements including: - Decreased labor requirement - Increased milking herd management - Increased facility capacity for milking cows - Herd expansion without capital investment with use of existing facilities - Increased feed inventory for milking cows - Potential for better replacement heifers Major elements associated with a contract for raising dairy replacements are: - Time period - Amendments, renegotiations, and renewal - Billing and payment procedures - Conditions for termination of agreement - Definition of each party's responsibility Methods of charging for heifer grower services include: - Per animal per day - Per pound of gain - Option to purchase - Per animal - Feed plus yardage # **Chapter 6: Nutrition, Feeds, and Feeding** ## **ACRONYMS** | AA | Amino acid | |------|--------------------------------------| | ADF | Acid detergent fiber | | ADIN | Acid detergent insoluble nitrogen | | ADP | Adenosine diphosphate | | AMP | Adenosine monophosphate | | ATP | Adenosine triphosphate | | BCS | Body condition score | | BHBA | Beta hydroxybutyrate | | BUN | Blood urea nitrogen | | CF | Crude fiber | | CP | Crude protein | | DCAD | Dietary cation-anion difference | | DE | Digestible energy | | DM | Dry matter | | DMI | Dry matter intake | | FFA | Free fatty acid | | GIT | Gastrointestinal tract | | ME | Metabolizable energy | | MUN | Milk urea nitrogen | | NDF | Neutral detergent fiber | | NDIN | Neutral detergent insoluble nitrogen | | NE | Net energy | | NEL | Net energy for lactation | | NEFA | Non-esterified fatty acid | | NFC | Non-fiber carbohydrates | | NIR | Near-infrared reflectance | | NPN | Nonprotein nitrogen | | NSC | Nonstructural carbohydrates | | PUN | Plasma urea nitrogen | | RDP | Rumen-degradable protein | | RFI | Residual feed intake | | RFQ | Relative forage quality | #### **DEFINITIONS** **Acid** – A substance that has a low pH (below 7.0) **Alkaline** – A substance that has a high pH (above 7.0) Amino acids - Building blocks of true proteins **Anion** – A negatively charged ion or particle Annuals - Plants that are seeded each year and whose growth are completed in one crop year Baleage - Wrapped, round bales of silage Body condition scoring - A system to evaluate the thinness or fatness of dairy cattle Buffer - Any substance that can reduce changes in pH when an acid or alkali is added Cation – A positively charged ion or particle Chyme - Feed material found in the small intestine **Crude protein** – Total protein in a feed Cud - Feed that a cow has regurgitated and is being re-chewed **Digestible energy** – The total energy in a feedstuff minus the energy lost in feces Dry matter – Portion of a feed that remains after water has been removed by drying in an oven **Eructation** – Belching of gas by ruminant animals as a natural way for releasing gases produced during the fermentation process **Esophagus** – Tube that connects the mouth to the rumen Essential amino acids - Amino acids that must be provided in the diet Fatty acids – Building blocks of fats and lipids Forage - Vegetative portion of plants in a fresh, dried, or ensiled state that is fed to livestock **Functional amino acid** – Amino acid that regulates important biological functions other than just serving as a building block for true proteins **Green chop** - Forage harvested (cut and chopped) in the field and fed directly to livestock Hay - Dried forage (grasses, alfalfa, clovers) used for feeding farm animals **Mastication** - Chewing Metabolizable energy - Digestible energy minus the energy lost in urine and gas **Negative energy balance** - Occurs when the amount of energy taken into the body is less than the amount of energy required by the body **Net energy** - Actual amount of energy the body can use for growth, lactation, reproduction, and body maintenance **Nonessential amino acids** – Amino acids that are produced by the cow and do not have to be provided in the diet **Nutrient** - Any chemical substance that provides nourishment to the body Palatability - Taste or likability of a feedstuff **Papillae** - Tiny, finger-like projections that line the wall of the rumen Perennials - Plants that have a life cycle of more than two years Pica - Condition when animals eat inanimate objects that are not feed, e.g., stone, soil **Rumen degradable protein** - Protein or nitrogen that is degraded in the rumen by microorganisms and incorporated into microbial protein or freed as ammonia **Rumen undegradable protein** - Protein that passes through the rumen and is unchanged by microbes; also called by-pass protein **Rumination** - Process in ruminants when semi-liquid ingested feed is regurgitated into the esophagus, re-chewed, and re-swallowed for further digestion Saliva - Watery substance formed in the mouths of animals, secreted by the salivary glands **Saturated fatty acids** – Fatty acids that are completely hydrogenated; each carbon atom is associated with the maximum number of hydrogen atoms; they have no double bonds **Silage (ensilage)** - Green forage that is chopped and put into a silo, where it is packed or compressed to exclude air and undergoes an acid fermentation (lactic and acetic acids) that retards spoilage Total mixed ration - A blend of all feedstuffs (forages & concentrates) in one feed Transition period - Period of time from three weeks prior to calving to three weeks after calving **Unsaturated fatty acids** – Fatty acids that are not completely hydrogenated; they have one or more double bonds Villi - Small projections that line the small intestine wall #### **SALIVA** Saliva is the major buffer for maintaining optimum rumen pH. The mature dairy cow produces 50 to 80 quarts of saliva per day. The functions of saliva are to: - Moisten food - Provide fluid base for many nutrients - Lubricate food - Provide the proper environment for bacterial growth - Act as a buffer #### RUMINANT The dairy cow is a ruminant, meaning it has a four-compartment stomach. The stomach compartments are the reticulum, rumen, omasum, and abomasum. #### RETICULUM The reticulum is also known as the honeycomb. The reticulum is the stomach compartment located closest to the heart. Hardware disease occurs in the reticulum. #### **RUMEN** The rumen is also known as the fermentation vat. The rumen is the largest of the cow's stomach compartments. It makes up 25% of the newborn calf's stomach capacity and 80% of the mature cow's stomach capacity. Fermentation is the primary process that takes place in the rumen. Bacteria, fungi, and protozoa are types of organisms that live in the rumen and digest feed. Carbon dioxide and methane are gases produced in the rumen. The ideal rumen pH is 5.9 to 6.2. The rumen is acidotic when rumen pH drops below 5.9. #### **OMASUM** The omasum is also called manyplies. The main function of the omasum is the dehydration of partially digested feed. #### **ABOMASUM** The abomasum is the enzyme and acid secreting portion of the ruminant stomach. The abomasum is also called the true stomach. The primary acid found in the abomasum is hydrochloric acid. #### SMALL INTESTINE The segments of the small intestine are the duodenum, jejunum, and ileum. Fats are broken down in the small intestine. The liver is the first organ to receive blood from the small intestine. The pancreas secretes digestive enzymes into the small intestine. #### LARGE INTESTINE The main functions of the large intestine are water absorption and storage of waste materials. #### **NUTRIENTS** The main processes for which a cow uses nutrients from her feed are: - Maintenance - The nutrients contained in feedstuffs are: - Carbohydrates - Fats Growth Protein - Production - Reproduction Minerals Vitamins Water #### **ENERGY** Major sources of energy for the dairy cow are fats and carbohydrates. Energy is most likely to be the limiting nutritional requirement for the high producing dairy cow. A calorie is a unit of measure of energy in a feed; it is the amount of energy required to raise 1 gram of water 1°C. #### **FATS** Fats are the most concentrated energy source in dairy cattle rations. They contain 2.25 times the energy value of starch. The recommended maximum level of fat in a lactating cow's ration is 5 to 7% of ration dry matter. The forms of fat used in dairy cattle rations include animal fats (tallow), protected fats (calcium soaps), and whole oil seeds (whole cottonseed, whole soybeans). Whole oil seeds contain high levels of unsaturated fatty acids. #### **CARBOHYDRATES** The basic elements contained in carbohydrates are carbon, hydrogen, and oxygen. Cellulose and hemicellulose are structural carbohydrates that the cow can use as a source of energy. Starch, sugar, and pectin are nonstructural carbohydrates that are highly digestible parts of feeds. #### **VOLATILE FATTY ACIDS** Volatile fatty acids are the main products of carbohydrate digestion by rumen microorganisms. The main volatile fatty acids produced in the rumen are acetic acid (acetate), butyric acid (butyrate), and propionic acid (propionate). Acetic acid is the primary source of energy and milkfat. Propionic acid is a precursor for glucose; it is produced from digestion of starch and grain. #### **PROTEIN** The basic elements that are present in all proteins are carbon, hydrogen, oxygen, and nitrogen. Most proteins contain 16% nitrogen. To determine the crude protein content of a feed, multiply the nitrogen fraction by 6.25. If a farmer said he was feeding a 16% dairy feed, the 16% is referring to crude protein. Proteins derived from poultry, marine or vegetable sources may be used in ruminant rations. Proteins derived from ruminant sources may not be used in ruminant rations because of concerns about Mad Cow Disease. ####
AMINO ACIDS There are 20 standard amino acids. The cow's sources of amino acids are rumen undegradable protein and rumen microbes. Amino acids are classified as essential or nonessential. The ten essential amino acids for milking cows are: Arginine Lysine Tryptophan Histidine Methionine Valine Isoleucine Phenylalanine • Leucine Threonine The most limiting amino acids in dairy cattle nutrition are lysine and methionine. #### **MINERALS** Macrominerals are generally required in relatively large quantities. Requirements are usually stated as a percent of ration dry matter. The macrominerals are: Calcium Sulfur Sodium Magnesium Chlorine Potassium Phosphorus Potassium is the mineral needed by the dairy cow in the largest quantity. Microminerals (trace minerals) are required in relatively small quantities. Requirements are usually stated in parts per million (ppm). The microminerals are: Cobalt Zinc Selenium lodine Copper Manganese Iron #### **VITAMINS** Vitamins are classified as either fat-soluble or water-soluble. The fat-soluble vitamins are Vitamin A, Vitamin D, Vitamin E, and Vitamin K. Beta-carotene, found in most legumes and grasses, is a precursor of Vitamin A. Vitamin E has functions like selenium. Vitamin K plays a role in the coagulation of blood. The water-soluble vitamins are the B complex vitamins and Vitamin C. The B Complex vitamins are: • Thiamine (B1) Niacin (B3) • Biotin (B7) Choline Riboflavin (B2) Pantothenic Acid (B5) Folic Acid (B9) • B12 Vitamin C is also known as ascorbic acid. Vitamins are measured in International Units (IU). #### **WATER** Physiological functions of water in the body include: - A medium to transport nutrients - To carry waste products to the point of excretion - · Functions as a universal solvent - To cool the body at high environmental temperatures - Serves as a fluid to lubricate joints - Serves as a substrate for metabolic reactions - Serves as a fluid base for milk An average dairy cow drinks 30 to 50 gallons of water each day. Peak times for water consumption are as soon as cows leave the milking parlor and when cows consume large amounts of dry matter (at feeding). Performance (growth or milk production) will be reduced the quickest through a lack of water as compared to other nutrients. A dairy cow excretes or loses water through breathing, feces, milk, sweat, and urine. Factors influencing the amount of water consumed by dairy cattle include: Body size Environmental temperature Milk production Diet Relative humidity Water temperature #### **NUTRIENT REQUIREMENTS** Water quality Many factors are required to determine nutrient requirements of a lactating cow including: - Body weight - Fat test - Body condition - Age - Stage of lactation - Environmental temperature - Milk production level - Reproductive status #### **LEGUMES** Legumes used in dairy rations include: - Alfalfa - Clover - Peanuts - Soybeans - Bird's Foot Trefoil - Lespedeza - Peas - Vetch Nitrogen fixing bacteria are associated with legumes. Phosphorus is critical for the establishment of legumes. #### **GRAZING** The most common reason that farm owners adopt grazing is cost reduction. The main costs cited for reduction are feed and labor. Advantages of intensive rotational grazing include: Low input costs - Even manure distribution - Improved weed control - Disadvantages of grazing include: - Inconsistent quality - Unable to balance ration properly - Distance from parlor - Inconsistent quantity - Lower forage yield per acre - Low labor requirement - Reduced soil erosion #### **HAY** Immature hay is more valuable as a feed for dairy cows than mature hay because of: - Higher nutrient content - Greater palatability - Higher digestibility - Lower fiber Relative feed value (RFV) combines digestibility and intake estimates into one number for an easy and effective way to identify and market quality hay. RFV is expressed as a percent compared to full bloom alfalfa at 100 percent RFV. #### **SILAGE** Phases of silage fermentation are aerobic, anaerobic, stable, and feeding. Types of silage storage facilities include: - Bunker silo - Upright/tower silo - Oxygen limiting silo - Trench silo - Plastic bag The minimum recommended feeding rate from an upright silo is 2-4 inches per day in the winter and 4-6 inches per day in the summer. It is at least 6 inches per day for bunker silos. Plastic is generally considered the best material for covering a bunker silo. Even distribution of silage within the silo to exclude air is an important part of making good quality silage. Valuable nutrients that can be lost in seepage from a silo are minerals, organic acids, protein, and soluble sugars. Lactic acid is the most desirable acid produced during ensiling. Butyric acid is an undesirable acid. Heat damage in haylage is indicated by dark color and burnt odor. #### **CORN SILAGE** Corn silage has the best fermentation and preservation characteristics with minimal seepage when harvested at 35% dry matter. The desired pH or properly fermented corn silage is 4.0 or less. Cold flow ammonia may be added to corn silage to increase the crude protein content. Kernel processing of corn silage increases starch digestibility. The recommended theoretical length of cut (TLC) for corn silage harvested with a conventional harvester is % inch. If harvested with a harvester fitted with a kernel processor, TLC should be % inch. Characteristics of corn that have been introduced through transgenics include: - Corn borer resistance - Herbicide resistance - Bt corn hybrids were genetically engineered to provide resistance to the European corn borer. - High oil content - Waxy corn Brown midrib corn varieties have lower lignin concentrations, which increase fiber digestibility. #### FORAGE TESTING Forage testing is the most reliable way of knowing the nutrient content of forages. Forage testing methods include NIR and wet chemistry. A forage analysis report commonly contains: - Dry matter - Total digestible nutrients - Neutral detergent fiber - Crude protein - Net energy lactation - Ash (mineral matter) - Soluble protein - Acid detergent fiber When sampling square bales of hay for forage testing, 20 bales should be sampled. A dry matter determination may be done quickly and easily on a forage sample at home using a microwave oven, gram scale, paper plate and water glass. #### **FIBER** Fiber is needed in dairy cattle rations to: - Maximize dry matter and energy intakes - Maintain normal milk fat percentage - Maintain normal rumen function - Protect against post-calving difficulties Digestibility of plant fiber decreases as the plant increases in age and/or in hot weather. Acid detergent fiber (ADF) consists of cellulose, lignin, and lignified nitrogen components (heat damaged protein). The acid detergent fiber content of a high producing cow's ration should be 18-21%. Neutral detergent fiber (NDF) is used to predict feed intake. The compounds that make up neutral detergent fiber (NDF) are cellulose, hemicellulose, and lignin. #### FORAGE PARTICLE SEPARATOR A forage particle separator can be used to: - Evaluate whether there is enough long fiber in the ration - Check for over mixing and particle size reduction - Develop baseline particle size information for comparison - · Check ration uniformity - Determine optimum mixing order - Evaluate whether particle size changes with hay quality - Check for sorting #### **BY-PRODUCT FEEDS** By-products can be successfully used as feed for dairy cattle. Before including a byproduct in the ration, the following factors should be considered: - Nutrient composition - Availability - Storage - Ability to feed/use - Cost - Palatability - Consistency By-product feedstuffs include: - Cottonseed hulls - Cottonseed meal - Distillers grains - Wheat middlings - Dried brewers grain - Hominy feed - Peanut meal - Whole cottonseed - Soybean hulls - Soybean meal - Wet brewers grain #### **IONOPHORES** lonophores alter rumen fermentation by boosting the production of propionic acid and reducing the production of acetic acid. Examples of ionophores are Lasalocid and Monensin. Monensin is approved for use in lactating dairy cattle, but Lasalocid is not. #### MINERAL SUPPLEMENTS Common mineral supplements include: - Dicalcium phosphate - Magnesium oxide - Potassium chloride - Limestone - Monocalcium phosphate - White salt Limestone is an excellent source of calcium. #### **BUFFERS** Reasons one might add buffers to a dairy cow's ration include: - Increase fat test - Improve digestibility - Aid in adjusting to high-energy ration - Maintain acid-base balance - Improve milk quality - Improve intake Buffers commonly used in dairy rations include: - Limestone (calcium carbonate) - Sodium bentonite - Magnesium oxide - Sodium bicarbonate #### DIETARY CATION-ANION DIFFERENCE Dietary Cation-Anion Difference (DCAD) is a helpful tool to prevent milk fever. The elements used to calculate DCAD are Sodium (+), Potassium (+), Chlorine (-), and Sulfur (-). lonic salts are used in pre-fresh cow rations to help prepare cows for the sudden demand for blood calcium. Examples are: - Ammonium chloride - Calcium chloride - Magnesium chloride - Ammonium sulfate - Calcium sulfate - Magnesium sulfate #### **FEEDING** Advantages of feeding a total mixed ration (TMR) include: - Eliminate selective feeding - Lower percent fiber needed in ration - Consistent ration - Easier to balance precisely - High dry matter intake Advantages of automated feed pushing include: - Consistency - Reduced feed refusals - Increased butterfat content - Fewer digestive upsets - Free-choice mineral not needed - Can feed a variety of by-products - Higher milk production - Minimized sorting - Improved performance of timid cows Feed bunks for the milking herd should be cleaned out daily to remove refusals. #### **GROUPING** When grouping the milking herd, several factors may be considered including: - Body condition - Production level - Stage of lactation - Lactation number -
Reproductive status - Health #### **BODY CONDITION SCORING** Body condition scoring, based on a five-point scale, can be used to evaluate nutrition and health. A score of 1 is given to a very thin cow; a score of 5 is given to a very fat cow. Targets for body condition scores at different stages of lactation are: | At calving | 3.0-3.25 | |-----------------|----------| | Early lactation | 2.5 | | Mid lactation | | | Late lactation | 3.0 | | At drying off | | #### MILK UREA NITROGEN Milk urea nitrogen (MUN) shows how well nitrogen and fermentable carbohydrates are balanced in the ration. The desirable range for MUN is 8 to 12 mg/dL. If MUN is below 8 mg/dL, there is a risk of low rumen ammonia, which can reduce rumen microbial growth. If MUN is over 12 mg/dL, there may be nitrogen losses through urine that raise environmental concerns. If MUM is over 16 mg/dL, there may be negative impacts on reproduction. #### **MISCELLANEOUS** A mature dairy cow has 32 teeth but has no upper front teeth. Feed is the largest cost in milk production. Molasses is often added to dairy cattle rations to improve taste (palatability) and reduce dustiness. Raw soybeans will turn rancid if they are ground. Peak milk production usually occurs 2-3 weeks before peak feed intake. ## Chapter 7: Lactation, Milking, and Udder Health #### **ACRONYMS** | BST | Bovine somatotropin | |-------|---------------------------------------| | BTMC | Bulk tank milk culture | | BTSCC | Bulk tank somatic cell count | | CFM | Cubic feet per minute | | CIP | Clean in place | | CMT | California mastitis test | | CNS | Coagulase-negative staphylococci | | DMSCC | Direct microscopic somatic cell count | | IGF | Insulin-like growth factor | | IMI | Intramammary infection | | rBST | Recombinant bovine somatotropin | | SCC | Somatic cell count | | SCS | Somatic cell score | | WMT | Wisconsin mastitis test | #### **DEFINITIONS** **Acute mastitis** - Mastitis characterized by sudden onset, redness, swelling, hardness, pain, grossly abnormal milk, and reduced milk yield **Agitator** - Stirs milk in the bulk tank to help with cooling and to provide a uniform product mixture for sampling **Air injector** - Device that allows controlled, cyclic admission of air during cleaning and sanitizing to produce slug flow conditions **Alternating pulsation** - When cyclic movement of the liners of two teat cups within a cluster alternate with the movement of the other two liners **Alveoli** - Spherical clusters of secretory cells in the mammary gland that are arranged in grape-like structures Backflushing - System for sanitizing teat cup liners between cow milkings **Bulk tank** - Large storage tank for cooling and storing milk at a cold temperature until it is transported to a processing plant; usually made of stainless steel **Chronic mastitis** - Mastitis that continues over a long period of time, with progressive development of scar tissue and simultaneous reduction in milk yield **Clean-in-place** - Capability to clean and disinfect the milk-contact components of a milking system by circulating appropriate solutions through them without disassembly Clinical mastitis - Mastitis characterized by visible abnormalities in the udder or milk Foremilk - First streams of milk stripped from the udder prior to milking **Forestripping** - Process by which the first few streams of milk are removed from the teat prior to milking to observe for abnormalities and to flush the teat canal **Inflammation** - Condition in which the cow's body seeks to eliminate or neutralize invading microorganisms and repair damaged tissue. **Intramammary infection** - Infection characterized by the presence of microorganisms growing in the udder **Involution** - Process by which udder tissue goes back to a non-milk-producing state after drying off **Keratin** - Waxy substance produced by cells lining the teat canal that serves as a plug between milkings and aids in reducing penetration by microorganisms Lactation - Period of time when a cow is in milk **Latency period** – Time between the completion of tactile stimulation and attachment of the milking unit **Liner slip** - Condition whereby a teat cup slides down the surface of the teat, often accompanied by a squawk **Looped milkline** - Milkline that forms an enclosed circuit with two full-bore connections to the receiver **Lowline milking system** - System in which the milk inlet to the milkline or receiver jar is below the animal standing level Mastitis - An inflammation of the udder, most commonly caused by infecting microorganisms **Milk letdown** - Process through which milk is squeezed out of milk-producing tissue by the action of the hormone, oxytocin **Milk meter** - Device between the cluster and the milkline for measuring all the milk from an individual animal Milk stone - Milk-mineral deposit on milk handling equipment **Milkline** - Line that carries milk and air during milking and has the dual function of providing milking vacuum and conveying milk to a receiver Myoepithelium - Contractile tissue that forces milk out of the alveoli upon action of oxytocin **Preparation lag time** – Time between the first tactile stimulation and attachment of the milking unit Pulsation - The cyclic opening and closing of a teat cup liner Pulsation rate - The number of times per minute that the pulsator opens and closes **Pulsation ratio** - The amount of time a pulsator creates vacuum to open the liner compared with the amount of time it admits air to collapse the liner **Pulsator** - The part of the milking system that causes the alternate vacuum pressure between the teat cup shell and liner Residual milk - Milk remaining in the mammary gland following completion of milking Ropy milk - Milk that contains strings of white blood cells **Sanitary trap** - Vessel between the milk system and the air system to limit movement of liquids and other contaminants between the two systems Sanitizer - Chemical solution used to kill bacteria on product contact surfaces **Somatic cell count** - Measurement most commonly used as an indicator of mastitis; an indicator of the extent of subclinical mastitis present in a cow's udder or number of leukocytes present **Spontaneous recovery** - Ability of a cow to cure itself of an udder infection without the aid of antibiotics or other drugs **Stray voltage** - Small electric currents that flow through the electrical grounded-neutral system and that pass through a cow's body, adversely affecting her behavior and performance Strutting - Condition in which the teats point out too much **Subclinical mastitis** - Mastitis with no detectable change in the udder itself and no observable abnormality of the milk **Vacuum gauge** - An instrument to indicate the level of vacuum in the system relative to atmospheric pressure Vacuum pump - An air pump that produces vacuum in the milking system **Vacuum regulator** - The part of the milking system that prevents the vacuum level from exceeding a prescribed level; also called vacuum controller **Washline** - Line that carries cleaning and sanitizing solutions during the cleaning process from the wash sink, vat, or tank to the milking units, milkline or milking vacuum line #### **HORMONES** Adrenaline (epinephrine) can interfere with milk ejection when a cow becomes frightened or upset. Inhibitory effects of adrenaline can last 20 to 30 minutes. Oxytocin is the hormone that causes milk letdown. It is produced by the hypothalamus but secreted from the posterior pituitary. Maximum oxytocin concentration in blood occurs one minute after beginning stimulation. Prolactin is the pituitary hormone that is critical in the initiation and maintenance of lactation. Estrogen and progesterone are ovarian hormones that are involved in the development of the mammary gland. #### MILK PRODUCTION The parts of the teat through which milk passes are the teat cistern, sphincter muscle, and streak canal (teat canal). Cows milked three times a day will normally produce 8 to 15 percent more milk than cows milked twice a day. Cows calving in November, December, and January have the highest 305-day milk production. #### MILKING FACILITIES Types of milking parlors include herringbone, parallel, parabone, rotary, and side opening. The herringbone parlor is the most common type in use today. Automatic milking systems milk cows without human labor. Other names for automatic milking systems are voluntary milking systems and robotic milking. #### MILKING EQUIPMENT Parts of a milking unit include the claw, teat cup shell, teat cup liner (inflation), milk tube, and short air tube. Teat cup liners (inflations) should generally be replaced every 1,000 - 1,200 cow milkings. Specifically, the teat cup liner (inflation) is the only part of the milking system that touches the cow. Signs of a malfunctioning milking system include: - Excessive vacuum fluctuation - Slow milking - Teat cups fall off A liner slip may be caused by: - Improper liner design - Vacuum fluctuations - Flooded milk lines - Squawking teat cups - Uneven milk flow - Cluster weight - Milking wet teats Vacuum pressure at the teat end at the time of milking should be 12 to 13 inches of mercury. #### **CLEANING EQUIPMENT** A standard milking equipment cleaning protocol consists of four phases: Pre-rinse Acid rinse Chlorinated alkaline cleaning Sanitization The key factors for adequate, effective cleaning of milking systems are contact time, water temperature, and chemical concentration. Recommended temperature of water for washing the bulk tank, lines, and other equipment is 160°F. Dirty equipment is most frequently the cause of high bacteria counts in milk. #### MILKING PROCEDURES The recommended milking procedures are: - 1. Provide a clean, low stress environment for cows. - 2. Check foremilk and udder for mastitis. - 3. Pre-dip teats in an effective product and provide a 20 to 30-second contact time. - 4. Dry teats completely with an individual towel. - 5. Attach
milking unit within 1 minute after the start of stimulation. - 6. Adjust units as necessary for proper alignment. - 7. Shut off vacuum before removing unit. - 8. Dip teats immediately after unit removal with an effective product. Consequences of long pre-milking stimulation include: - Lower production - Higher somatic cell count (mastitis problems) - Slower milking time #### **TEAT DIPS** When using a teat dip as a pre-dip, the dip should be left on the teat for at least 20 to 30 seconds before it is wiped off. The main reason for teat dipping after each milking (post-dipping) is to reduce the rate of new infection in the udder. Solutions commonly used as teat dips include: Bronopol • Quaternary ammonia Iodine Chlorine Chlorhexidine • Hydrogen peroxide • DDBSA #### **CLOTH TOWELS** When using cloth towels in udder preparation, the following guidelines are recommended: - Use a separate towel for each cow. - Wash cloth towels using warm water. - Do not let damp towels sit between uses because of yeast or mold contamination. - Dry towels immediately after washing or add bleach when washing. #### **MASTITIS** The major factors involved in bovine mastitis are the cow, microorganisms, and environment. Mastitis is the costliest disease in dairy cattle. Economic losses due to mastitis are estimated to be about \$200 per cow per year. Mastitis-related costs include: - Reduced milk production (64%) - Drugs (5%) - Discarded milk (14%) - Veterinarian (3%) - Early cow replacement cost (8%) - Labor (1%) - Reduced cow sale value (5%) - Lost milk premiums (variable) The main types of mastitis are subclinical mastitis, clinical mastitis, acute mastitis, and chronic mastitis. Symptoms of clinical mastitis include: - Flakes - Stringy milk - Hot quarter - · Presence of blood - Clots - Watery milk - Swollen quarter The California Mastitis Test, conductivity, and strip cup are on-farm screening tests to detect mastitis. Potential causes of mastitis include: - Failure to teat dip - Poor housing/environment - Poor sanitation - Faulty milking equipment - Poor milking practices - Stray voltage - Improper dry cow management The most effective measures to prevent new mastitis infections are teat dipping and dry cow antibiotic treatment. The streak canal (teat canal) is the cow's first line of defense against mastitis infections; leukocytes are the second natural line of defense. Steps in a good mastitis control program are: - Use functionally adequate milking equipment in the correct manner. - Dip teats after milking with an effective product. - Treat clinical cases immediately with recommended dosages. - Treat every quarter of every cow at dry off with an effective dry cow product. - Cull chronic cows. #### **SOMATIC CELLS** High numbers of somatic cells in milk are generally an indicator of infection (mastitis). Somatic cells include two types of cells: - White blood cells (leukocytes) that move into the udder during inflammation - Epithelial cells from milk producing tissues Normal milk generally has a SCC less than 200,000 cells/milliliter. The legal limit for somatic cell counts in raw milk in the United States is 750,000 cells/ml. The limit in the European Community is 400,000 cells/ml. U.S. milk and milk products exported to European Union member countries must have a rolling average somatic cell count less than 400,000 cells/ml. #### **MASTITIS-CAUSING PATHOGENS** Culturing milk samples (on-farm or in a lab) can provide information for mastitis prevention, treatment, and control by identifying the mastitis-causing pathogen. Contagious mastitis-causing pathogens are those growing in the udder that are spread from cow to cow. Examples include: - Staphylococcus aureus (Staph. aureus) - Mycoplasma species - Streptococcus agalactiae (Strep. ag.) Environmental mastitis-causing pathogens grow in the cow's environment and contact the udder and teats causing infection. They include bacteria classified as coliforms or environmental Streptococci. Coliforms include: - Escherichia coli (E. coli) - Enterobacter species - Klebsiella species Environmental Streptococci include: - Streptococcus dysgalactiae - Streptococcus uberis Sources of environmental bacteria in dairy herds are: - Soil - Bedding - Mud - Water - Feedstuffs - Feces Factors affecting the dairy cow's environment are: - Climate - Herd size - Frequency and length of confinement housing - Season of year - Housing type - Management of cows and facilities Many other pathogens may cause mastitis including other bacteria, fungi, and yeast. # MILK QUALITY AND COMPOSITION The legal limit for bacteria counts in raw milk in the U.S. is 100,000 cfu/ml. Sources of on-farm milk contamination include: - Air (dust) - Dirt (outside of the cow) - Feed - Interior of udder - Antibiotics - Equipment - Insects - Water Factors that can influence milk composition include: - Age of cow - Breed - Environmental temperature - Estrus - Genetics - Milking procedures - Nutrition - Season - Somatic cell count - Stage of lactation Conditions that will cause a decrease in fat test include: - Finely chopped feeds - Extremely hot weather - Estrus - Low fiber content in ration - Illness Mastitis influences milk composition. Components that decrease in concentration in mastitic milk are: - Calcium - Casein - Fat - Lactose - Phosphorus - Potassium - Solids not fat - Total proteins - Total solids Components that increase in concentration in mastitic milk are: - Chloride - Immunoglobulins - Leukocytes - Lipase - Sodium - Trace Minerals #### **DRY PERIOD** The traditionally recommended length of the dry period for dairy cows is 45 to 60 days. The most effective time to treat mastitis infections is at drying off. The purposes of dry cow antibiotic treatment are to remove existing infections and prevent new infections. Benefits of dry cow antibiotic treatment include: - Higher concentration of antibiotics than lactating products - Antibiotics remain in the udder longer - · No discarding of saleable milk - Cure of existing infections - Prevention of new infections Blanket dry cow therapy is the practice of treating every quarter of every cow at drying off. Selective dry cow therapy is the practice of treating only cows that are at higher risk of an intramammary infection at drying off. Selective dry cow therapy is a way to decrease the use of antibiotics in food animals. Herds considering a selective dry off program may want to evaluate the following before implementation: - Bulk tank SCC - Individual cows' monthly SCC tests - Mastitis detection proficiency - Culture results from clinical mastitis cases - Contagious mastitis pathogen presence in the herd - Dry off protocol adherence In herds with a selective dry off program, the following information may be used to identify cows that could be omitted from treatment: - SCC - Cases of clinical mastitis in past 90 days - · California Mastitis Test (CMT) score at drying off # **Chapter 8: Milk and Dairy Products** #### **ACRONYMS** | ADV | Acid degree value | |-------|---| | CFU | | | CLA | Conjugated linoleic acid | | HACCP | Hazard Analysis and Critical Control Points | | HTST | High temperature, short time | | NFDM | Nonfat dry milk | | PI | Preliminary incubation | | PMO | Pasteurized Milk Ordinance | | RDA | Recommended Daily Allowance | | SNF | Solids not fat | | SPC | Standard plate count | | TS | Total solids | | UF | Ultrafiltration | | UHT | Ultra high temperature | #### **DEFINITIONS** **A2 milk** - Cow's milk that contains only the A2 variant of beta-casein protein (A1 is the other variant) Acid degree value - Test that detects rancidity in milk Casein - The primary protein found in milk **Churning** - Process that turns cream into butter **Clarification** - Process that removes solid impurities from milk prior to pasteurization Cream - High fat milk product separated from milk **Cryoscope** - Instrument used to test the freezing point of milk to determine if water has been added **Cultured dairy products** - Dairy foods that have been fermented with lactic acid bacteria Fortification - Process by which vitamins are added to milk **Hazard Analysis and Critical Control Points** - System of quality control that identifies where mistakes often occur Lactase - Enzyme needed by humans to digest lactose Lactose - Milk sugar that gives milk its sweet flavor Lactose intolerance - Condition when a person cannot break down milk sugar Lipase - Enzyme that breaks down butterfat, leading to rancidity **Pasteurization** - Process that destroys any disease-producing bacteria that might be present in raw milk Phosphatase test - Test used to determine if raw milk has mixed with pasteurized milk Raw milk - Milk as it comes from the cow prior to processing Rennet - Substance containing many enzymes that is obtained from the lining of a calf's stomach Rennin - Enzyme found in rennet that is used to coagulate protein (casein) when making cheese Separation - Process of dividing milk into skim milk and cream Standard plate count - Test that measures bacterial content of raw milk to monitor milk quality **Standardization** - Process that assures that milk and dairy products will be uniform in protein and fat content Whey - Fluid by-product of cheesemaking #### MILK Milk is nature's most nearly perfect food. Milk is 96-98% digestible. Animals other than the cow are also used to produce milk for human consumption throughout the world. These animals include the goat, sheep, camel, water buffalo, reindeer, horse, and yak. Cow's milk consists of 87.4% water and 12.6% milk solids. Milk solids can be divided into solids-not-fat (8.9%) and fat (3.7%). Components of the solids-not-fat part of milk are protein (3.4%), lactose (4.8%), and minerals (0.7%). The minimum total solids-not-fat content in the legal definition of milk is 8.25%. #### **PROTEIN** Milk contains casein and whey proteins. Milk taste improves as the protein level in milk increases. ####
LACTOSE Lactose is the major solids component of milk. The simple sugars that make up lactose are glucose and galactose. #### VITAMINS AND MINERALS Vitamin D is added to milk at processing time to prevent rickets. It is essential for efficient use of calcium and phosphorus in bone growth. Reduced fat (2% fat), lowfat (1% fat), and skim milk must be fortified with Vitamin A to be nutritionally like whole milk. The minerals found in milk that are important in bone growth are calcium and phosphorus. #### **CONJUGATED LINOLEIC ACID** Conjugated linoleic acid (CLA) is an 18-carbon fatty acid present in milk, particularly from cows grazing pasture, which has been found to have cancer prevention effects. CLA content is greater in higher fat products. #### **MILK QUALITY** Advantages of high-quality milk from a processor's point of view include: - Improved flavor - · Long shelf life - Increased cheese yield - Reduced hauling and handling costs due to low quality milk not having to be diverted to an alternative use Advantages of high-quality milk from a dairy producer's point of view include: - Greater profitability - Increased milk yield - Low culling rates - Low treatment costs - Reduced labor and labor cost - Larger milk checks due to improved milk per cow and premiums # **ON-FARM MILK STORAGE** A bulk tank should be washed and sanitized every time it is emptied. Grade A raw milk must be cooled to 45°F or less within two hours after milking. After the first milking, the temperature of milk in a bulk tank should not reach higher than 50°F at any time. Milk temperature should be kept under 40°F to maintain the best quality. # **MILK QUALITY TESTS** Raw milk quality tests used by milk plants include: - Acid degree value - Antibiotic test - Flavor - Freezing point - Leukocyte (somatic cell) count - Preliminary incubation (PI) count - Sediment test - Standard plate count #### **OFF-FLAVORS** Common off flavors in milk are: - Acid - Bitter - Cooked - Feed - Fermented - Foreign - Fruity - Lacks freshness - Oxidized - Rancid - Salty - Sour Off-flavors in milk are most found in the butterfat component. An oxidized flavor can result from exposing milk to: - Sunlight or fluorescent lighting (Light-oxidized) - Copper bearing surfaces (Metal-oxidized) Pigmented milk cartons are used to prevent an oxidized flavor. A sour flavor occurs when there are large numbers of bacteria present in milk. #### **ANTIBIOTIC RESIDUES** Antibiotic residues are not allowed in milk for human consumption. Reasons for this regulation include: - Some people are allergic to antibiotics. (Main reason) - Milk that contains antibiotic residues is not good for cheese making. - Bacteria may become resistant to antibiotics. - Antibiotics are not a natural part of milk. # **PASTEURIZATION** Pasteurization increases the shelf life of milk by greatly reducing the total bacteria population. The batch or holding method of pasteurization heats milk to 145°F for not less than 30 minutes. The high temperature, short time method of pasteurization heats milk to 161°F for 15 seconds. #### **BEVERAGE MILKS** Milk is labeled according to the following standards: | Label | Other names | Fat (grams per cup) | Calories per cup | |-------------|--------------|---------------------|------------------| | Fat free | Nonfat, skim | 0 | 80 | | Low-fat | 1% fat | 2.5 | 100 | | Reduced fat | 2% fat | 5 | 120 | | Whole | | 8 | 150 | Titanium dioxide is often added to fat free milk to whiten the milk. #### **BUTTER** It takes 21.2 pounds of whole milk to make a pound of butter. Butter must contain a minimum of 80% fat. U.S. Grade AA is the highest grade of butter sold in the U.S. One stick of butter = 1/2 cup = 1/4 pound = 8 tablespoons # **CREAM** Cream must contain at least 18% milk fat. Cream varieties include: - Acidified sour cream - Acidified sour half & half - Cream in aerosol cans - Half & half - Heavy cream - Light cream - Light whipping cream - Reduced-fat sour cream - Sour cream - Sour half & half #### CHEESE It takes 10 pounds of whole milk to make a pound of cheese. The protein content of milk most affects the amount of cheese one can get from a unit of milk. The major components of dried whey are lactose, minerals, and protein. Cheese is classified according to its consistency. The classes are soft, semi-soft, hard, and very hard. Mozzarella cheese is the most popular variety of cheese in the United States. Cheddar is second. Feta and Roquefort are cheeses made from the milk of animals other than the dairy cow. Top five states for total cheese production in 2022: - 1. Wisconsin - 2. California - 3. Idaho - 4. New Mexico - 5. New York #### **FROZEN DAIRY PRODUCTS** Frozen dairy products include ice cream, frozen custard, sherbet, and frozen yogurt. It takes 12 pounds of whole milk to make a gallon of ice cream. Federal standards require ice cream to contain a minimum of 10% milk fat and 20% total milk solids by weight. Some premium ice creams contain 16% milk fat. #### **CULTURED DAIRY PRODUCTS** Cultured dairy product examples include: - Acidophilus milk - Buttermilk - Crème fraîche - Kefir - Sour cream - Yogurt Yogurt is a mixture of milk (whole, reduced-fat, lowfat, or nonfat) and cream fermented by a culture of lactic acid-producing bacteria. Yogurt contains at least 3.25% milk fat and 8.25% solids-not-fat. Authentic Greek yogurt is made by straining yogurt using muslin or cheesecloth to remove whey from the yogurt to make it creamy and thick. It takes four pounds of milk to make one pound of authentic Greek yogurt. # **Chapter 9: Milk Marketing** #### **ACRONYMS** | COOL | Country of Origin Labeling | |-------|---------------------------------------| | CWT | Cooperatives Working Together | | DIPP | Dairy Indemnity Payment Program | | DMC | Dairy Margin Coverage | | NOP | National Organic Program | | USMCA | United States-Mexico-Canada Agreement | | WTO | | #### **DEFINITIONS** Fluid milk - Packaged dairy products used as beverage milks **Fluid products** - Term traditionally used to define products including beverage milks, fluid cream items, and yogurts Fluid utilization - Proportion of Grade A milk in a market used to produce fluid (Class I) milk **Mailbox milk price** - Price for milk of average composition and is a weighted average for the market; accounts for all payments received for milk including performance bonuses and premiums; also accounts for all deductions such as promotion, hauling, capital retains, and cooperative dues Manufacturers - Producers of cheese, butter, nonfat dry milk, and other storable dairy products **Manufacturing milk** - Grade B milk or the Grade A milk used in the production of manufactured dairy products Milk class - Describes how milk is used by the processor or in a marketing area **Processors** - Firms that process raw Grade A milk into fluid products #### **CONSUMER ASSURANCES** The expiration date on a milk carton is a customer's assurance of a fresh dairy product. The "Real Seal" assures the customer that the product they are purchasing is a genuine dairy product. #### FEDERAL MILK MARKETING ORDERS The Agricultural Marketing Agreement Act of 1937 provided for Federal Milk Marketing Orders. The Secretary of Agriculture regulates Federal Milk Marketing Orders. There are eleven Federal Milk Marketing Orders in the United States. Multiple component pricing is used in seven of the orders. The current Federal Milk Marketing Orders are: - Appalachian - Arizona - California (most recent addition) - Central - Florida - Mideast - Northeast - Pacific Northwest - Southeast - Southwest - Upper Midwest #### **MILK CLASSES** Federal Milk Marketing Orders have four milk classes based on how milk is used by the processor or in a marketing area. Class I – Milk used for beverage milks **Class II** – Milk used for soft products (e.g., cottage cheese, ricotta cheese, ice cream mixes, sour cream, yogurt, and fluid cream) **Class III** – Milk used for cream cheese and other spreadable cheeses, and hard cheese of types that may be shredded, grated, or crumbled **Class IV** – Milk used for butter, any milk product in dried form, and evaporated or sweetened condensed milk in a consumer-type package #### **MILK GRADES** Fluid grade (Grade A) milk is milk produced under sanitary conditions that qualify it for fluid consumption. Only Grade A milk is regulated under Federal Milk Marketing Orders. The Pasteurized Milk Ordinance (PMO) is the document that establishes the standards for Grade A milk. Manufacturing grade (Grade B) milk is milk not meeting the fluid grade standards. Less strict standards generally apply. #### **MILK COOPERATIVES** The top five milk producing cooperatives in the U.S. based on member milk volume in 2022 were: - 1. Dairy Farmers of America Inc. - 2. California Dairies Inc. - 3. Edge Dairy Farmer Cooperative - 4. Land O'Lakes Inc. - 5. Select Milk Producers Inc. The top 50 cooperatives accounted for 81.3 percent of the milk produced in the U.S. in 2022. # **COOPERATIVES WORKING TOGETHER** Cooperatives Working Together (CWT) is a dairy farmer-funded self-help program to address supply and demand imbalances that can depress milk prices. The CWT program focuses on providing export assistance. CWT is operated within the structure of the National Milk Producers Federation. CWT's funding comes from farmers who invest 4 cents per hundredweight of milk sold. #### **TRADE** The United States-Mexico-Canada Agreement replaced the North American Free Trade Agreement (NAFTA). The top five countries buying dairy products from the United States in 2022 were: - 1. Mexico - 2. Canada - 3. China - 4. South Korea - 5. Philippines The top five countries selling dairy products to the United States in 2022 were: - 1. Ireland - 2. New Zealand - 3. Italy - 4. Canada - 5. France #### ORGANIC DAIRY PRODUCTION USDA's National Organic Program (NOP) regulates the standards for any farm, wild crop harvesting, or handling operation that wants to sell an
agricultural product as organically produced. According to the USDA National Organic Program, organic livestock must be: - Generally managed organically from the last third of gestation. - Allowed year-round access to the outdoors except under specific conditions like inclement weather. - Raised on certified organic land meeting all organic crop production standards. - Raised per animal health and welfare standards. - Fed 100 percent certified organic feed, except for trace minerals and vitamins used to meet the animal's nutritional requirements. - Managed without antibiotics, added growth hormones, mammalian or avian byproducts, or other prohibited feed ingredients (e.g., urea, manure, or arsenic compounds). NOP standards for organic livestock production require access to certified organic pasture throughout the grazing season and a diet consisting of at least 30% dry matter intake from pasture grazed during the grazing season, totaling at least 120 days. #### DAIRY PROMOTION Fifteen cents per hundredweight of milk sold are deducted from every dairy producer's milk check to pay for promotion and research through the dairy checkoff. Started in 1937, June Dairy Month was originally called National Milk Month. The American Dairy Association is the national leader for June Dairy Month. National Grilled Cheese Month is observed in April. National Ice Cream Month is observed in July. The dairy case is usually placed at the rear of the store because it causes shoppers to walk past many other products to get to the dairy case, which increases impulse buying. The "Got Milk?" campaign was first used by California milk processors in 1993. It was retired by MilkPEP in 2014 and was replaced by the "Milk Life" tagline. The Dairy Checkoff's approach to schools switched from "Fuel Up to Play 60" to "Fuel Up" for the 2023-2024 school year. #### DAIRY PRODUCT CONSUMPTION As a person's age increases, his/her milk consumption tends to decrease. McDonald's is the fast-food chain that uses the most milk in the U.S. Milk is the victory drink at the Indianapolis 500 each year. Cheese consumption in the U.S. was at an all-time high at 40.14 pounds per person in 2022. #### **DIETARY GUIDELINES** According to the 2020-2025 Dietary Guidelines for Americans, the following amounts of dairy are recommended in the Healthy U.S.-Style Pattern: MyPlate is an illustration of the five food groups in a place setting based on the 2010 Dietary Guidelines for Americans; it is designed to help consumers make healthier food choices. # **Chapter 10: Reproduction** #### **ACRONYMS** | AI | Artificial insemination | |-------|--| | CIDR | Controlled internal drug release | | CL | Corpus luteum | | CR | Conception rate | | ET | Embryo transfer | | FSH | Follicle stimulating hormone | | GnRH | Gonadotropin releasing hormone | | IVF | In vitro fertilization | | LH | Luteinizing hormone | | MGA | Melangestrol acetate | | MOET | Multiple ovulation and embryo transfer | | PGF2a | Prostaglandin F2α | | PR | Pregnancy rate | | SCR | Sire conception rate | | TAI | Timed artificial insemination | | UTJ | Utero-tubule junction | | VWP | Voluntary waiting period | #### **DEFINITIONS** **Abortion** – Premature expulsion of a fetus **Anestrus** – Failure to have an estrous cycle Anovulation - Situation that exists when cows are not ovulating Artificial insemination - Process of freezing semen from a bull and thawing it later to fertilize ova Calving interval – Period from one calving to the next calving, usually measured in months **Capacitation** – Physiological changes that occur to sperm membranes which are essential to attainment of fertilization potential **Caruncle** – Uterine side of the placental attachment points **Cold shock** – Permanent injury to sperm caused by a sudden decrease in semen temperature after thawing Conception rate - Percent of services (breedings) that result in a pregnancy **Corpus luteum** – Temporary gland that forms on the ovary after the ovum is released; also called yellow body **Cotyledon** – Placental side of the placental attachment points **Cryptorchidism** – Condition when one or both testes fail to descend from the abdomen into the scrotum, often affecting fertility Days open – Days from calving until conception or successful breeding date **Days to first service** – Days from calving until first breeding date **Embryo transfer** – Process of removing a fertilized ovum from a donor cow and transferring it to another cow or heifer; Most embryo transfers are conducted on day 7 or 8 after breeding Endometritis - Inflammation of the uterine lining Estrus - Period of heat in dairy cattle **Fertilization** – Process of joining an ovum and a sperm. It takes place in the oviduct Freemartin – Sterile heifer born twin to a bull French straw – Thin cylinder in which frozen semen is preserved **Gestation** – Period of pregnancy; it begins at fertilization and ends at birth **Heat detection rate** – Number of animals bred divided by the number of animals eligible for breeding, typically each 21-day cycle Infertility – Describes the animal that is neither normally fertile nor totally sterile **Involution** – Process where the uterus returns to normal size after calving **Metritis** – Infection of the uterus **Ovulation** – Process of releasing an ovum from the follicle on the ovary **Parturition** – Act of giving birth (also called calving, freshening) **Pregnancy rate** – Percent of cows that become pregnant out of those cows eligible to become pregnant in a period, usually 21 days **Recipient** – An animal that received a fertilized ovum from a donor. **Retained placenta** – Condition when the fetal membranes remain attached to the maternal caruncles within the uterus for an extended period after calving (greater than 24 hours). **Service rate** – Proportion of cows eligible for service in a set period (usually every 21-day period) that are bred **Sire Conception Rate** – An evaluation of artificial insemination (AI) service-sire fertility computed by the Council on Dairy Cattle Breeding; calculated for Ayrshire, Brown Swiss, Guernsey, Holstein, Jersey, and Milking Shorthorn bulls Sterility - Describes the animal that cannot reproduce **Superovulation** – Process that involves treating a cow with a hormone (FSH) to increase the number of ova produced **Transvaginal aspiration** – Use of ultrasonography to view the ovary while removing oocytes through the vagina using a needle; harvested oocytes are matured and fertilized in vitro **Voluntary waiting period** – Time period after calving when the dairy producer chooses not to breed a cow; most common VWP is 60 days **Zygote** – A fertilized ovum #### **COW'S REPRODUCTIVE TRACT** The parts of the cow's reproductive tract are: VulvaCervixOviduct VaginaUterusOvary The lower segment of the oviduct closest to the uterus is the isthmus. The connection between the uterus and the oviduct's isthmus is the utero-tubule junction. The large funnel-like structure on the open end of the oviduct is the infundibulum. The broad ligament is the structure that holds the uterus and ovaries in their proper position. The main functions of the ovary are production of ova and secretion of hormones essential for reproduction. One hundred percent (100%) of the ova in a mature cow's ovaries were present at birth. The fertile life of an ovum after its release from the follicle is 6 to 12 hours. The site of semen deposition in natural service (bull) is in the vagina next to the cervix; in artificial insemination it is normally in the body of the uterus. The fetus develops in the uterus after the ovum is fertilized. Under the influence of progesterone, the uterus produces a nourishing substance for the embryo called uterine milk. The placenta is the structure through which the fetus receives all its nutrients. The placenta is attached to the uterus in dairy cattle by maternal caruncles and fetal cotyledons (placentomes). A thick mucous plug is formed in the cervix to prevent bacterial or vírus access into the uterus. #### FEMALE REPRODUCTIVE HORMONES Gonadotropin Releasing Hormone (GnRH) - Secreted by the hypothalamus - Controls the secretion of pituitary hormones (FSH and LH) Follicle Stimulating Hormone (FSH) - Secreted by the anterior pituitary gland - Stimulates growth of follicles # Luteinizing Hormone (LH) - Secreted by the anterior pituitary gland - Causes the follicle to rupture and then causes the corpus luteum to replace the follicle - Increases dramatically in concentration 24 hours prior to ovulation soon after the onset of estrus # Estrogen (E2) - Produced by the follicle - Necessary for behavioral estrus and peaks at the onset of standing estrus #### Progesterone (P4) - Produced by the corpus luteum - Necessary for the maintenance of pregnancy - Inhibits the release of GnRH from the hypothalamus ### Prostaglandin (PGF) - Produced by the uterus (endometrium) - Causes destruction or regression of the corpus luteum #### **ESTROUS CYCLE** The normal range in length of the estrous cycle is 18 to 24 days. On average, there are 21 days between heat periods in dairy cows. The phases of the estrous cycle are: - Follicular (active follicles are present) - Luteal (corpus luteum is the dominant ovarian structure) The stages of the estrous cycle are: - 1. Estrus: heat period - 2. Metestrus: transition - 3. Diestrus: corpus luteum present - 4. Proestrus: prior to estrus Follicles develop in a wave-like pattern known as the follicular wave. There are five phases of a follicular wave: - 1. Recruitment - 2. Selection - 3. Growth - 4. Dominance - 5. Regression There are normally 2 or 3 follicular waves during an estrous cycle in cattle. Dominant follicle is the name given to the largest follicle present on one of the ovaries. #### **ESTRUS** Duration of standing heat is usually 2 to 12 hours with an average of 7 hours. Pregnancy is the most common cause of a cow not coming back into
heat. It is estimated that 3 to 5% of pregnant cows exhibit estrus. Milk progesterone levels are low during estrus. A silent heat is the condition where the physical signs of heat are difficult to detect. Signs of estrus in dairy cattle include: - Restlessness - Bellowing - Following and smelling another cow - Mounting other cows Standing to be mounted is the most reliable sign of estrus. Estrus synchronization programs include: - CIDR - Ovsynch - Pre-Synch - Standing to be mounted - Clear mucus discharge from vulva - Vulva becomes red and swollen Co-Synch Heat-synch Heat detection aids used on dairy farms include: - Heat expectancy charts - Tail chalk - Pedometers - Accelerometers - Pressure sensors - Electronic heat detection systems - Detector animals #### ARTIFICIAL INSEMINATION Advantages of using artificial insemination over natural service include: - Safety - Genetic improvement - Better disease control - Better record keeping - Easier to prove bulls - Less expensive than keeping a bull A cow should be artificially inseminated 5 to 15 hours after the onset of standing heat. The most popular semen package available today is the 0.5-ml French straw. Liquid nitrogen is used to freeze and store semen. The temperature of liquid nitrogen is -320°F. Frozen semen should be thawed in a warm water bath (90 to 95°F) for a minimum of 40 seconds to maximize the number of motile sperm. Simple semen tank management practices to maintain semen quality include: - Avoid excessive movement or abuse of the tank - Routinely monitor nitrogen levels - Store in an area with good lighting but out of direct sunlight - Keep the tank elevated above the concrete floor or other wet and poorly ventilated surfaces - Store only the amount of semen needed for six months Ways to eliminate the chance of semen cold shock include: - Warm the inseminating rod and sheath to body temperature - Handle the thawed semen and prepare the insemination rod in a warm environment - Wrap the assembled insemination rod in a clean, dry paper towel and tucking it into some clothing for transport to the cow - Inseminate the cow as soon as possible after the semen has been thawed Sales of dairy semen in the U.S. peaked in 2015 at 24 million doses. ### **CONCEPTION RATE** Factors affecting a dairy herd's conception rate include: - Heat detection accuracy - Herd (cow) fertility - Semen (bull) fertility - Technician competency Reasons cows don't become pregnant when the herd is bred by artificial insemination include: - Failure to ovulate - Fertilization failure - Hormone imbalance - Poor quality semen - Failure to inseminate - Improper insemination technique - Heat detection errors #### PREGNANCY RATE Pregnancy rate is the combined effect of heat detection rate and conception rate. Pregnancy rate is usually calculated every 21 days because that is the average length of the dairy cow's estrous cycle. Pregnancy rate can be calculated for Al bred herds, bull bred herds, or a combination of both. #### **ULTRASOUND** Ultrasound can be used in a reproductive management program in several ways including: - Pregnancy determination - Determine embryonic losses - Determine if twins are being carried - Monitor cystic ovaries - Determine sex of embryo #### **GESTATION** Average gestation length varies from 276 to 292 days. Gestation length can vary due to many factors including: - Age of the cow - Breed of the cow - Sex of the calf Brown Swiss cattle have the longest gestation period. · Number of calves carried Season of the year #### **PARTURITION** Hormonal changes near the time of calving cause the following things to happen: - Regression of the CL - Pelvic ligament dilation - Cervical secretions - Muscle contractions Cortisol is the hormone the calf triggers in response to stress to initiate parturition. Relaxin is the hormone released prior to calving that enables the cervix to soften and stretch in preparation for expelling the calf. Signs that a cow is near calving include: - Udder full - Vulva enlarged - Mucus discharge The three stages of the calving process are: - 1. Dilation - 2. Expulsion of the calf (labor) - 3. Expulsion of the placenta The normal birth position of a calf is front feet first with the head between the legs. Intervention with calving is needed only under these conditions: - Lack of noticeable progress every 15 to 20 minutes - If the cow or calf are showing significant signs of distress - If the calf is in an abnormal position Restlessness Relaxation of ligaments at tail head ### **CALVING INTERVAL** A herd's average calving interval is influenced by several factors including: - Voluntary waiting period - Estrus (heat) detection - Conception rate - Reproductive culling #### MALE REPRODUCTIVE SYSTEM The main functions of the testes are to produce sperm and produce the male sex hormones. Mature sperm are stored in the epididymus. Sperm live 24 to 30 hours after being deposited in the cow's reproductive tract. It takes sperm 6 hours to become capacitated (i.e., to develop the ability to fertilize the ovum). Sperm produce lactic acid during metabolism. Fructose is the primary sugar found in semen. # MALE REPRODUCTIVE HORMONES #### REPRODUCTIVE HEALTH Reproductive failure is the number one reason for culling in U.S. dairy herds. It usually takes 30 to 45 days after calving for a cow's reproductive tract to return to normal. Incidence of metritis, endometritis, and retained placenta is highest in summer. Poor nutrition and uterine infections are the leading causes of anestrus. Diseases that cause abortions in dairy cattle include: - Brucellosis - Campylobacteriosis (Vibriosis) - Chlamydia - IBR - Leptospirosis - Listeriosis - Neospora - Trichomoniasis Cystic ovaries are found in 12-14% of problem breeders. They develop in 10-40% of dairy cows during their lifetime. Types of cystic ovaries are follicular cysts, luteal cysts, and cystic corpus lutea. Follicular cysts are thin walled, anovulatory (not ovulating) cysts. They secrete variable amounts of estrogen. Luteal cysts are thick-walled cysts. They secrete low levels of progesterone. Cystic corpus lutea have characteristics like normal corpora lutea. Twinning in dairy cattle has several disadvantages including: - Reduced milk production - Calving difficulties are more frequent - Twins are often weak at birth - Potential for a freemartin heifer Abortion rates are higher Ninety percent (90%) of heifers born twin to a bull are sterile. # **Chapter 11: Genetics** # **ACRONYMS** | AGIL | Animal Genetics and Improvement Laboratory | |-------|--| | AIP | Animal Improvement Program | | BAA | Breed Age Average | | BLAD | Bovine Leukocyte Adhesion Deficiency | | BLUP | Best Linear Unbiased Predictor | | CCR | Cow Conception Rate | | CD | Cholesterol Deficiency | | CE | Calving Ease | | CM\$ | | | CVM | Complex Vertebral Malformation | | DBH | Difficult Birth in Heifers | | DCE | Daughter Calving Ease | | DNA | Deoxyribonucleic Acid | | DPR | Daughter Pregnancy Rate | | DUMPS | Deficiency of Monophosphate Synthase | | EBV | Estimated Breeding Value | | ETA | Estimated Transmitting Ability | | FAIR | Farm Animal Identification and Records | | FM\$ | Fluid Merit | | FTI | Functional Trait Index | | FUI | Functional Udder Index | | GM\$ | Grazing Merit | | GMD | Gold Medal Dam | | GMO | Genetically Modified Organism | | gPTA | Genomic Predicted Transmitting Ability | | HCR | Heifer Conception Rate | | JPI | Jersey Performance Index | | LIV | Livability | | MACE | Multiple-Trait Across Country Evaluations | | mRNA | Messenger Ribonucleic Acid | | NM\$ | Lifetime Net Merit | | PA | Parent Average | | PCR | Polymorasa Chain Reaction | | | Polymerase Chain neaction | | PPR | Progressive Performance Rating | |------|-----------------------------------| | PTA | Predicted Transmitting Ability | | PTI | Production-Type Index | | RFI | Residual Feed Intake | | RFID | Radio Frequency Identification | | RNA | Ribonucleic Acid | | rRNA | Ribosomal Ribonucleic Acid | | RT | Recessive Tested | | RVC | Rectovaginal Constriction | | SB | Stillbirth | | SCE | Service Sire Calving Ease | | SDM | Spinal Dysmyelination | | SMA | Spinal Muscular Atrophy | | SNP | Single Nucleotide Polymorphism | | STA | Standardized Transmitting Ability | | TPI | Total Performance Index | | tRNA | Transfer Ribonucleic Acid | #### **DEFINITIONS** Allele - Any of the alternative forms of a gene that may occur at a given locus **Beef-on-dairy** – Mating of beef bulls to dairy females, with the resulting offspring used for meat purposes **Chromosome** - A threadlike linear strand of DNA and associated proteins found in the nucleus of animal and plant cells that carries the genes and functions in the transmission of hereditary information **Epigenetics** - The study of changes in organisms caused by modification of gene expression rather than alteration of the genetic code itself Gene - The basic unit of inheritance Gene mapping - The process of determining where genes are located on individual chromosomes **Genome** - The total genetic content of an organism **Genomics** - The study of genes or gene products in an organism **Genotype** - Genetic make-up of an individual **Heritability** - Measure of the percent of phenotypic differences between animals for a single trait that can be transmitted to offspring **Locus** - Position that a given gene occupies on a chromosome **Pedigree** - A record of ancestry **Phenotype** - The observed trait of an individual resulting from the effects of the genotype, the environment, and their interaction **Predicted Transmitting Ability** - Measurement of average superiority or inferiority that will be transmitted to an offspring **Proteomics** - The study of all the proteins that genes create **Purebred** - A dairy animal whose sire and dam of the same breed are registered or who are eligible to be registered in a herdbook Reliability - Indicator of the accuracy of genetic
evaluations Siblings - Technical term used to describe brothers and sisters # **BASIC GENETICS** The sire determines the sex of a calf. Dairy cattle have 30 pairs of chromosomes. The genetic makeup of a population can be changed by migration, selection, mutation, and chance. #### ANIMAL IDENTIFICATION Identification is the first step in a herd improvement program. A registration paper or certificate accompanies a purebred animal and certifies its parentage. American ID numbers for dairy cattle consist of a three-letter country code followed by a twelve-digit animal number and will be used by DHI organizations, breed associations, and state animal health departments. The country code for the U.S. is 840. Visibility is the most important feature when selecting tags or brands for identification. #### NAAB CODE FOR SIRES The NAAB code for a sire has three parts. • The number before the letter indicates the stud from which the bull's semen can be purchased. It is referred to as the stud code. | Bull Stud | Stud Code | |------------------------|-----------| | Genex Cooperative | 1 | | Select Sires, Inc | 7 | | Alta Genetics USA, Inc | 11 | | ABS Global | 29 | | Semex Alliance | 200 | • The letters indicate the breed. | Breed | Abbreviation | |-------------------|--------------| | Ayrshire | AY | | Brown Swiss | BS | | Guernsey | GU | | Holstein | НО | | Jersey | JE | | Milking Shorthorn | MS | | Red and White | WW | • The number following the letters is an individual bull identification number. Example: 7HO00543 is the NAAB Code for CARLIN-M IVANHOE BELL. #### **GENETIC EVALUATIONS** The Council on Dairy Cattle Breeding publishes U.S. genetic evaluations. Official evaluations are released in April, August, and December. Genomic evaluations are released monthly. A minimum of ten (10) daughters is required for a bull to have a bull proof published. The genetic base for genetic evaluations is updated every five years. It was most recently updated in April 2020 and is the average PTA of animals born in 2015. The next base change is scheduled for 2025. INTERBULL is the name of the International Bull Evaluation Service based in Uppsala, Sweden. #### ANIMAL MODEL The Animal Model is the genetic method for evaluating bulls and cows currently used. When making its evaluation, the Animal Model uses information from: - Parents (pedigree) - Individual performance - Progeny (offspring) #### **GENETIC INDEXES** Lifetime Net Merit (NM\$) is a genetic index which includes the following traits: - Milk - Fat - Protein - Somatic Cell Score - Productive Life - Feet and Legs Composite - Udder Composite - Body Weight Composite - Daughter Pregnancy Rate The Health Trait Index includes the following traits: - Milk fever - Displaced abomasum - Ketosis - Heifer Conception Rate - Cow Conception Rate - Calving Ability - Livability - Health Trait Index - Residual Feed Intake - Early First Calving - Heifer Livability - Mastitis - Metritis - Retained placenta Total Performance Index (TPI) is a genetic index used by the Holstein breed that is determined by placing emphasis on production and type. The traits included are: - Protein - Fat - Feed Efficiency - Type - Udder Composite - Feet and Leg Composite - Productive Life - Health Trait Index - Cow Livability - Somatic Cell Score - Fertility Index - Daughter Calving Ease - Daughter Stillbirth Traits used in the Udder Composite Index for Holsteins are: - Udder depth - Fore udder attachment - Udder cleft - Rear udder height - Rear udder width Front teat placement - Rear teat placement - Teat length - Stature Traits used in the Body Weight Composite Index for Holsteins are: - Stature - Body Depth - Strength - Rump Width - Dairy Form Stature The Feet and Legs Composite Index for Holsteins is calculated using the traits of: - Foot Angle - Rear Legs Side View - Rear Legs Rear View - Pearless Bearlies Traits used in the Dairy Capacity Composite Index for Holsteins are: - Dairy Form - Strength The Jersey Performance Index (JPI) is a genetic index used by the Jersey breed that is determined by placing emphasis on production and type. Traits in the 2023 JPI are: - Protein - Fat - Daughter Pregnancy Rate - Cow Conception Rate - Productive Life • Somatic Cell Score Feet and Legs Score - Mastitis - Udder Depth - Fore Udder - Rear Udder Height The Jersey Udder Index serves as an indicator of mastitis resistance in Jerseys; it uses the following traits: - Udder Depth - Fore Udder - Udder Cleft - Rear Udder Height - Teat Placement - Teat Length - Rear Udder Width - Rear Teats Side View - Rear Teats Rear View # **CALVING EASE** Farm employees should assign calving ease scores at the time of calving to describe the event. The scoring system is: 1 = No problem or unobserved 4 = Considerable force 2 = Slight problem 5 = Extremely difficult 3 = Needed assistance The Council on Dairy Cattle Breeding calculates two Calving Ease Summaries for the National Association of Animal Breeders (NAAB): - Service Sire Calving Ease measures a bull's tendency to sire calves that are born easily. - Daughter Calving Ease measures the influence of the sire of the cow on calving ease. #### **STILLBIRTH** It is recommended that farm employees record stillbirth scores to provide accurate calf mortality information. The scoring system is: - 1 = the calf was born alive and was alive 48 hours postpartum - 2 = the calf was born dead - 3 = the calf was born alive but died within 48 hours postpartum Daughter Stillbirth measures the ability of a particular cow (daughter) to produce live calves. Service Sire Stillbirth measures the tendency of calves from a particular service sire to be stillborn. Stillbirth evaluations are expressed as percent stillbirths in heifers (%SBH), where stillborn calves are those scored as dead at birth or born alive but died within 48 hours of birth. # **INBREEDING** Inbreeding can decrease mature equivalent (ME) milk production by 60 to 80 pounds per lactation for each percent increase in inbreeding. Consequences of inbreeding include: - Decreased general vigor - Decreased production - Decreased reproductive performance - Increased calf mortality - Increased similarity between animals - Smaller mature size - More recessive genes exposed - Slower growth rate # **UNDESIRABLE RECESSIVE TRAITS** Undesirable recessive traits in Brown Swiss cattle are: - Weaver - Spiderleg Undesirable recessive traits in Holsteins include: - BLAD - Brachyspina - Bulldog - Cholesterol Deficiency - Complex Vertebral Malformations - DUMPS - Spinal Dysmyelination - Spinal Muscular Atrophy - Dwarfism - Hairless - Imperfect Skin - Mule-Foot (Syndactylism) - Pink Tooth (Porphyria) - Prolonged Gestation Undesirable recessive traits found in Jerseys are: - Jersey Neuropathy with Splayed Forelimbs (JNS) - Limber Legs - Rectovaginal Constriction Undesirable recessive traits found in Ayrshires are: - Fish Milk - Curly Calves (Arthrogryposis multiplex) Undesirable recessive traits have not been documented for Guernseys or Milking Shorthorns. # **Chapter 12: Animal Health** ### **ACRONYMS** | BLV | Bovine Leukosis Virus | |--------------------------|---| | BRD | Bovine Respiratory Disease | | BRSV | Bovine Respiratory Syncytial Virus | | BSE | Bovine Spongiform Encephalopathy | | BVD | Bovine Virus Diarrhea | | DA | Displaced Abomasum | | ELISA | Enzyme-Linked Immunosorbent Assay | | FARAD | Food Animal Residue Avoidance Databank | | HBS | Hemorrhagic Bowel Syndrome | | | | | IBR | Infectious Bovine Rhinotracheitis | | | Infectious Bovine RhinotracheitisImmunoglobulin | | lg | | | IgIM | Immunoglobulin | | Ig IM IV | Immunoglobulin
Intramuscular | | Ig IM IV MLV | | | Ig IM IV MLV NAHMS | ImmunoglobulinIntramuscularIntravenousModified Live Virus | | Ig IM IV MLV NAHMS NSAID | ImmunoglobulinIntramuscularIntravenousModified Live VirusNational Animal Health Monitoring System | ### **DEFINITIONS** Antibiotics - Chemical agents given to animals that kill or stop the growth of bacteria **Antibodies** (Immunoglobulins) - Proteins synthesized by organs of the cow's immune system that aid in the elimination of foreign substances such as microorganisms; the main immunoglobulin isotypes are IgA, IgE, IgG, and IgM Balling gun - Instrument used to give an animal a pill **Biosecurity** - Management practices that protect the herd from the entry of new diseases and minimize the spread and/or adverse effects of diseases in the herd Carrier - An animal that is infected with a disease but has no clinical symptoms **Disease** - A change in the normal state of the body, or one or more of its organs, which disturbs the proper performance of body functions **Enzyme** - Protein that acts as a catalyst in starting or speeding up specific chemical reactions Erythrocytes - Red blood cells; only cells that have no nucleus Morbidity rate - Number of sick animals during a specified period Mortality rate - Number of dead animals during a specified period Pathogen - Any microorganism that causes disease Phagocytosis - Process by which white blood cells engulf microorganisms **Physiology** - Branch of biology that deals with the process, activities, and phenomena of life and living organisms Toxin - Poison produced by microorganisms that kills cells **Trocar** - An instrument used to puncture the rumen in cases of bloat **Zoonoses** - Diseases and infections that are transmitted between vertebrate animals and human beings # PROPER AND COMMON DISEASE NAMES | Proper Name | Common Name | |--|--------------------------------| | Acetonemia | Ketosis | | Bovine spongiform encephalopathy | Mad cow disease | | Brucellosis | Bang's disease | | Displaced abomasum | Twisted stomach | | Dystocia | Calving difficulty | | Fibropapellomatosis | Warts | | Hemorrhagic bowel syndrome | Bloody gut | | Hypocalcemia | Milk fever | | Infectious bovine
keratoconjunctivitis | Pinkeye | | Infectious bovine rhinotraceitis | Red nose | | Laminitis | Founder | | Listeriosis | Circling disease | | Papillamatous digital dermatitis | Hairy heel warts | | Paratuberculosis | Johne's disease | | Parturient paresis | Milk fever | | Pneumonic pasteurellosis | Shipping fever | | Pododermatitis | Foot rot | | Traumatic gastritis | Hardware disease | | NORMAL STATS FOR DAIRY ANIMALS | | | Temperature | | | Calf | 102.5°F | | Adult dairy cow | 101.5°F | | Pulse rate (cow) | 60 - 70 heart beats per minute | | Respiratory rate (cow) | 30 breaths per minute | #### ANATOMY AND PHYSIOLOGY The basic tissues that make up a cow's body are: - Connective - Epithelium The organ systems found in the body are: - Circulatory - Digestive - Endocrine - Integumentary (skin) - Muscular - Muscle - Nerve - Nervous - Reproductive - Respiratory - Skeletal Insulin is a hormone produced by the pancreas that promotes cell growth and division. The parathyroid gland is responsible for mobilizing calcium from the bone. Ligaments connect one bone to another bone; tendons connect muscle to a bone. The mitochondrion is known as the powerhouse of the cell because all energy is produced in this cell part. Approximately 400 pounds of blood are pumped through the udder to produce one pound of milk. The external pudic artery is the major artery supplying blood to the udder. #### **DISEASES** Diseases can be classified based on their primary cause: - Environmental - Genetic - Infectious - Metabolic Infectious diseases of cattle result from the interplay between three factors: - The animal and its ability to resist disease (immunity) - An infectious agent (bacteria, viruses, and parasites) - The environment Diseases in dairy cattle that are caused by a virus include: - Blue tongue - BLV - BRSV - BVD - Cow pox - IBR - PI-3 - Warts Diseases caused by clostridial organisms include: - Blackleg - Malignant edema - Overeating disease - Tetanus - Examples of metabolic diseases are: - Displaced abomasum - Ketosis - Laminitis - Milk fever - Retained placenta Diseases with a color in their name include: - Blackleg - Blue tongue - Pinkeye - Red nose - Red water - White heifer disease - White muscle disease Zoonoses that may be transmitted from cattle to humans include: - Brucellosis - Cowpox - Cryptospirosis - Leptospirosis - Listeriosis - Q-fever - Rabies - Ringworm - Salmonellosis - Tuberculosis #### **ACIDOSIS** Acidosis is a metabolic disorder that often occurs when a dairy cow eats too much grain. #### **BLACKLEG** Blackleg is an acute, fever producing disease of cattle and sheep. The bacterium Clostridium chauvoei causes the disease. Blackleg most often occurs in pastured cattle during the spring or fall. # **BLOAT** Bloat is the condition when a cow cannot belch. Cows grazing rapidly growing legumes are susceptible to bloat. Gases associated with bloat are carbon dioxide and methane. Poloxolene may be administered to prevent or correct bloat. Simple laundry detergent can be used to alleviate bloat in cattle. #### **BOVINE LEUKOSIS VIRUS** Bovine Leukosis Virus (BLV) is a retrovirus that infects lymphoid tissue. The virus is transmitted to cattle mainly by direct exposure with infected blood, saliva, semen, and milk. Signs of BLV infection include: - Tumors in lymphoid tissues - Enlarged lymph nodes - Weight loss - Decreased milk production - Fever - Loss of appetite - Rear limb weakness or paralysis - Protruding eyeballs - Gastrointestinal obstructions - Increased blood lymphocyte counts #### **BRUCELLOSIS** Brucellosis (Bang's disease) is caused by a bacterium. Infections may cause: - Abortions - Stillborn or weak calves - Retained placentas The milk ring test is used to identify Brucellosis in cattle. Undulant fever is the human equivalent of brucellosis. Drinking raw milk contaminated with Brucella bacteria is the means of contracting the disease. #### **COCCIDIOSIS** Coccidiosis is a disease in calves that is also very common in poultry and is characterized by chronic diarrhea. Signs of coccidia in calves include: - Watery scours with flakes of blood - Dull listlessness - Mucus in the feces Dehydration Weight loss Reduced milk yield Weight loss Methods to control coccidiosis include: - Accurate diagnosis and monitoring - Maintain sanitation - Limit stress - Medicate There are two classes of anti-coccidial drugs: - Coccidiocides kill coccidia as they migrate through the intestine, interrupting the organism's life cycle. - Coccidiostats inhibit the coccidia's growth and development, preventing them from reproducing. #### **CRYPTOSPIROSIS** Cryptosporidium parvum is a protozoan parasite that has been recognized as a common cause of diarrhea in calves and other animals, including humans. Management practices that can reduce cryptospirosis in newborns include: - Provide clean, dry areas for cows to calve - Feed colostrum using a clean bottle and sanitized nipple - Provide clean, dry pens for calves - Allow pens to thoroughly dry between calves - Feed and care for sick calves last #### **DISPLACED ABOMASUM** A displaced abomasum is the condition where the abomasum moves positions inside the body cavity and twists, causing severe digestive problems. Most displaced abomasums are left-sided (80-90%). Predisposing factors for a cow's displaced abomasum include: - Acidotic rations - Advanced pregnancy - High milk production - Hypocalcemia - Lack of exercise - Lead feeding - Selenium deficiency - Stress of calving #### **FAT COW SYNDROME** Fat cow syndrome is a disease when a cow gains too much weight during late lactation or the dry period. The disease is almost always associated with other problems at calving including: - Displaced abomasum - Fatty liver syndrome - Mastitis - Metritis - Milk fever - Retained placenta #### **GRASS TETANY** Grass tetany is a metabolic disorder associated with a magnesium deficiency. The disorder occurs most often in adult cows milking heavily and grazing lush green pastures. #### HARDWARE DISEASE Hardware disease is a general term used to describe a situation where a piece of metal has been swallowed and then collects in and/or pierces the reticulum. A magnet is often given to an animal to prevent hardware disease. #### **HEAT STRESS** The ideal environmental temperature range for dairy cattle is 25 to 65°F. A dairy cow can lose body heat through convection, conduction, radiation, and evaporation. Methods used to cool cows during heat stress include: - Shade - Air exchange - Air movement - Access to water - Sprinkle #### JOHNE'S DISEASE Johne's disease is caused by the bacterium Mycobacterium paratuberculosis, which infects the small intestine of ruminant animals, especially cattle, sheep, and goats. Cattle with Johne's disease are usually infected soon after birth, but the first symptoms do not appear until 2 to 4 years of age. Clinical symptoms of Johne's disease include: - Diarrhea - General unthriftiness - Soft swelling in the jaw - Substantial drops in milk production - Weight loss - Susceptibility to other problems such as infertility - Death Types of tests for Johne's disease commonly used today are: - Tests that measure antibodies in blood serum - Tests that find the organism in manure by fecal culture or polymerase chain reaction (PCR) No effective treatment can be recommended for Johne's disease. Therefore, producers must concentrate on preventing new infections. Strategies for preventing new Johne's disease infections include: - Prevent highly susceptible newborn calves and young animals from ingesting manure from adults, whether from the dam, the environment, or feed and water. - Calving areas should be dry, free of manure, and well-bedded. - Remove the calf from the dam immediately after birth. - Do not use the same equipment to clean up manure and to load feed. - Do not walk in feed bunks. - Identify and remove infected animals and their manure. - Investigate all animals considered for purchase and buy only from test-negative herds with no history of Johne's disease. - Do not allow test-positive cows to calve. - Sell at birth all calves from positive cows. #### **KETOSIS** Ketosis (acetonemia) is a condition when there is an accumulation of ketones in the body. Highest incidence of subclinical ketosis occurs within the first seven (7) days after calving. Key risk factors for developing ketosis include: - Obese cows during the dry period and at calving - High milk production The first signs of ketosis are: - · Cow goes off feed - Ketone (acetone) smell on the cow's breath Propylene glycol is fed or administered to cows to treat ketosis. Niacin may be added to feeds to aid in the prevention of ketosis. #### **LAMENESS** A cow may experience lameness for many reasons including: - Abscess - Foot rot - Infection - Injury - Soft sole syndrome - Trimming too close Factors contributing to the cost of lameness include: - Treatment costs - Nonsalable milk - Reduced milk production - Reduced reproductive performance - Increased risk of death and culling - Lameness recurrence - Elevated incidence of other disease - Prevention costs The most important practices for the reduction of foot problems are hoof trimming and footbaths. The purposes of a footbath are: - Remove irritants from the foot and between the toes - Disinfect and cleanse the foot - Dry and toughen the foot - Substances commonly used in a footbath include copper sulfate, zinc sulfate, and formalin. - The most common walk-through treatment for foot rot is a 5% solution of copper sulfate. #### MAD COW DISEASE Mad Cow Disease (Bovine Spongiform Encephalopathy) is a fatal brain disease of cattle; it affects the brain and spinal cord. The disease originated in the United Kingdom. # MILK FEVER Milk fever is caused by a deficiency of blood calcium related to an imbalance of calcium, phosphorus, and Vitamin D. Most cases of milk fever occur within 72 hours after calving. About 6 percent of dairy cows are affected by milk fever each
year. Groups of cows that are at greater risk of having milk fever are older cows, fatty liver cows, and Jerseys. Symptoms of milk fever include: Cow goes down Rapid heart rate Dilated eyes Below normal body temperature Calcium glutamate is an intravenous injection for immediate and temporary treatment of milk fever. #### **MYCOTOXINS** A mycotoxin is a toxin produced by a fungus, especially a mold. Members of the mycotoxin family that affect animals include: Aflatoxin Trichothecenes Zearalenone Fumonisin Ochratoxins Ergot alkaloid Clinical symptoms of mycotoxins in dairy cattle include: - Abortions - Cystic ovaries - Feed refusal - Gastrointestinal upsets - Infertility - No milk - Poor response to therapy - Silent heats - Unthriftiness - Weight loss Rise in metabolic disease due to liver malfunction ### **NEOSPOROSIS** Neosporosis is a disease that causes abortions and occasionally causes birth of weak "dummy" calves that have serious brain infections. A protozoan, Neospora caninum, causes the disease. Dogs are classified as a definitive host for the causative organism. # **PARASITES** Internal parasites in dairy cattle include: - Lung worms - Roundworms - Stomach worms - Liver flukes - Coccidia The brown stomach worm is the most economically detrimental parasite of cattle. Anthelminthics are a class of chemicals used to kill internal parasites. External parasites in dairy cattle include flies, lice, mites, mosquitoes, and ticks. Lice are most troublesome during winter and spring. Types of flies commonly found around the dairy farm are: House fly Face fly Heel fly Stable fly Horn fly Deer fly The face fly spreads pinkeye. The heel fly is associated with grubs or warbles in cattle. House and stable flies need heat, moisture, and a suitable breeding medium to survive and reproduce. The phases of a fly's life cycle are: • Egg Pupa Larvae Adult Sanitation is the most effective management tool to control flies on a dairy farm. ### **PINKEYE** Pinkeye is a highly contagious disease characterized by an infection of the cornea or membrane lining of the eye; it is most prevalent during the summer. The primary infectious agent is Moraxella Bovis, a bacterium. Measures for preventing pinkeye include: - Fly control - Vaccination - Clipping pastures to prevent seed-head development #### **PNEUMONIA** Predisposing causes of pneumonia in calves include: - Poor ventilation - High humidity - Dirty pens - Poor nutrition - Overcrowding - Wide range of ages in one pen - Drastic temperature changes Types of organisms that can cause pneumonia are: - Bacteria - Molds - Parasites - Viruses - Yeasts Pneumonia-causing bacteria include: - Pasteurella multocida - Mannheimia (Pasteurella) haemolytica - Haemophilus somnus - Mycoplasma species Pneumonia-causing viruses include: - Infectious bovine rhinotracheitis virus (IBR) - Parainfluenza-3 virus (PI3) - Bovine viral diarrhea virus (BVDV) - Bovine respiratory syncytial virus (BRSV) #### **RABIES** Rabies is a deadly viral infection that is mainly spread by infected animals. Suspected cases of rabies are confirmed by: - Fluorescent antibody test of brain - By injecting brain tissue into mice and observing Non-domestic animals that can cause an infection of cattle with rabies include: BatFox BobcatRaccoon CoyoteSkunk # **RINGWORM** Ringworm is a contagious disease caused by a fungus that can be easily spread to other animals. The fungus infection invades the hair follicles and the outer layer of skin. Tincture of iodine may be used to control ringworm. #### **SCOURS** Scours is a disease in calves characterized by diarrhea, dehydration, and unthriftiness. It is easily transferred from one animal to another through the manure of an infected animal. Bacteria that commonly cause scours among calves include Escherichia coli, Salmonella, and Clostridium perfringens. Viruses that commonly cause scours among calves include Rotavirus and Coronavirus. Protozoa that commonly cause scours among calves include coccidia and Cryptosporidium. #### SHIPPING FEVER Shipping fever is a respiratory disease that cattle often develop after being transported by truck or rail. #### **UDDER EDEMA** Udder edema is a condition that exists when an excessive amount of lymph accumulates between the skin and secretory tissue of the udder. #### **WARTS** Warts are caused by a virus and are contagious to other calves. #### WHITE MUSCLE DISEASE White muscle disease is caused by a deficiency of Vitamin E and/or selenium. The best way to prevent the disease is to supplement Vitamin E and selenium. #### **ANTIBIOTICS** A cow may be given antibiotics in numerous ways including: - Intramuscular injection - Intravenous injection - Intraperitoneal injection - Intramammary infusion - Intrauterine infusion - In the ration The jugular vein is the ideal location for most intravenous injections. # **VACCINATIONS** Calfhood vaccinations should be considered for the following diseases: - Blackleg - Brucellosis - BVD - Clostridia - IBR - Leptospirosis - Malignant edema - PI-3 - Scours The major types of vaccines are killed and modified live. # **MEDICINE CHEST** Suitable items for a medicine chest for the average herd include: - Alcohol - General use disinfectant - lodine solution - Bloat remedy - Teat and udder ointments - Adhesive tape - Scissors • Soap - Trocar and cannula - Petroleum jelly - Sterile bandaging material - Wash basin - Syringe and needles A needle should be used only once before it is disposed. # **Chapter 13: Nutrient Management** #### **ACRONYMS** | BMP | Best management practices | |------|---| | CAFO | Concentrated animal feeding operation | | CNMP | | | CWA | Clean Water Act | | EQIP | Environmental Quality Incentive Program | | IPM | Integrated pest management | | NPS | Non-point source | #### WATER Groundwater is water in the soil. It may resurface in a brook, stream, or pond. Water in drinking water wells is from groundwater. Surface water is water in any exposed body of water including streams, rivers, ponds, lakes, and oceans. The leading environmental issues facing farmers are phosphorus (P) and nitrogen (N) contamination of ground and surface water. Runoff is the movement of nutrients across the surface of soils to surface water (streams, rivers, ponds). Leaching is the movement of nitrate (a nitrogen containing compound) through soils to groundwater. Well-managed alternative water sources usually provide animals cleaner water and help prevent exposure to certain diseases. #### MANURE Manure storage allows manure to be applied according to crop needs rather than daily. Types of storage facilities for manure are: - Solid manure storage (dry stack barn) - Slurry manure storage (anaerobic pit, earthen structure, or above ground tank) - Liquid manure storage (lagoon) Slurry manure storage is the most common type of manure storage on dairy farms. General categories of odor-controlling chemicals for manure management are: - Masking agents - Odor counteractants - Enzymatic products Manure testing (measuring nutrient content) may reduce fertilizer purchases and/or prevent application of nutrients that exceed crop requirements. Factors that affect the nutritive value of manure are: - Climate - Crop - Method of application - Method of collection - Method of storage - Soil characteristics - Time of application - Type of feed ration - · Amount of added feed, bedding & water #### NON-POINT SOURCE POLLUTION Non-point source usually refers to pollution (nutrients, chemicals, toxins or pathogens) that contaminate ground or surface water. Non-point source pollution originates from multiple and diffuse sources which are not readily identified. Examples of non-point sources of nutrient pollution include most farms, agricultural cropland, and suburban lawns receiving fertilizer. #### **BEST MANAGEMENT PRACTICES** Best management practices are practices that protect water quality while improving profitability of the farm. The Soil and Water Conservation District (SWCD) is a local board that defines priority watersheds, approves conservation plans, and distributes cost share funds to farmers for implementation of BMPs. Cost-share is a financial incentive from the state or federal government to the farmer to help pay for equipment or practices that reduce pollution. Best management practices for livestock farms include: - Fencing animals out of bodies of surface water - Installation of an alternative water source - Installation of stream crossings - Installation of buffer strips between cropland and surface water - Shoreline or creek bank stabilization and protection - Animal travel lane stabilization - Rotational loafing lot management system - Installation of a stormwater retention pond - Planting small grain cover crops - Installation of a manure storage facility - Manure testing - Controlling surface water runoff - Implementation of a nutrient management plan Buffer strips are areas of grassland installed between cropland or feedlots and waterways to take up nutrients and prevent nutrients from running off into water. Benefits of small grain cover crops include: - Increase use of land applied nutrients - Stabilize cropland - Prevent erosion in wintertime The rotational loafing lot management system consists of vegetated exercise and rest areas installed to replace dirt exercise lots. Its benefits are: - Runoff is reduced because grass growing on lots uses nutrients - Soil erosion is reduced because grass growing on lots stabilizes soil - Cows stay cleaner Methods of reducing soil erosion include: - Contour cropping - Cover crop - Grass waterways - Reduced tillage - Soil seeding - Strip cropping - Terracing - Wind breaks #### **BEDDING MATERIALS** Common dairy cattle bedding materials include: - Newspaper - Recycled manure solids - Sand - Sawdust (green or kiln-dried) - Shavings - Straw # **NUTRIENT MANAGEMENT** A nutrient management plan is a plan for the land application of manure and
fertilizer to meet crop needs. Animal density impacts nutrient management on farms and is usually measured as animal units per acre. An animal unit is 1000 pounds of live weight of any animal. Areas that contribute animal waste that must be handled are: - Feeding area - Housing or loafing area - Holding pen area - Milking parlor - Runoff area #### WASTE MANAGEMENT SYSTEMS The following factors should be considered when planning a waste management system: - Environmental (Rainfall, stream location, prevailing winds, evaporation, temperature, topography, soil type, surface drainage, water table depth) - Operational (Herd size, cropping & feeding practices, land area, cropland for waste application, existing buildings & machinery) - Economic (Availability of capital and labor, future expansion plans) - Social (Neighbors, zoning) - Legal Requirements (EPA General Permit, State and local permits) #### COMPOSTING Composting requires air, moisture, nutrients, and carbon. Composting is an acceptable way of disposing of dead calves and cows. Two to six months are required for composting depending on the size of the animal and the rate of the compost reaction. Advantages of composting manure include: - Reduces volume - Does not attract flies and insects - Reduces potential for nutrient runoff - Weeds and pathogens destroyed - More uniform than manure - Reduces fertilizer needs - Excellent soil conditioner #### **FERTILIZER** Fertilizer labels have three important numbers. The first number is the amount of nitrogen (N). The second number is the amount of phosphate (P₂O₅). The third number is the amount of potash (K_2O) . These three numbers represent the primary nutrients: nitrogen (N), phosphorus (P), and potassium (K). A bag of 15-10-5 fertilizer contains 15 percent nitrogen, 10 percent phosphate, and 5 percent potash. # **Chapter 14: Dairy Goats** #### **DEFINITIONS** **Buck** – Male goat **Buckling** – Male goat that is 6 to 12 months old **Doe** – Female goat Doeling - Female goat the is 6 to 12 months old Capriculture – The study of goats and goat husbandry **Caprine** – Of or pertaining to goats **Kid** – Young goat under six months of age **Kidding** – Act of giving birth **Wattles** – Small appendages, usually hanging from the neck; serve no purpose and are often removed during the first few weeks of life Wether - Castrated male goat #### **BREEDS** The American Dairy Goat Association maintains herdbooks for eight dairy goat breeds: Alpine Sable Saanen Nigerian Dwarf La Mancha Toggenburg Oberhasli Nubian The American Dairy Goat Association is third in total dairy animals registered annually in the United States, following the Holstein and Jersey organizations. Farmers often select breeds on the basis of productivity (milk and fat percent), efficiency of production, and longevity. #### **ANATOMY** Goats are ruminants and have a four-compartment stomach consisting of the rumen, reticulum, omasum, and abomasum. The rumen makes up about 80% of the mature goat's stomach and has a 4-to-5-gallon capacity. A doe's udder has two halves, each with a single mammary gland. The doe has two teats. #### NORMAL STATS FOR DAIRY GOATS Temperature – 101.5 to 103.5°F Pulse rate – 70 to 80 beats per minute Respiration rate – 12 to 15 breaths per minute Gestation length – 150 days (145 to 156 days) # **GOAT'S MILK** The normal composition of goat's milk is: - Fat 3.8% - Protein 3.5% - Lactose 4.1% - Minerals 0.8% - Total solids 12.2% Factors affecting milk yield and composition include: - Breed - Age - Body size and weight - Udder size - Diet - Stage of lactation - Season - · Length of dry period - Environmental temperature # **INDUSTRY STATISTICS** According to the 2017 U.S. Census of Agriculture, the top five states for number of dairy goats were: - 1. Wisconsin - 2. California - 3. lowa - 4. Texas - 5. Missouri According to FAOSTAT, the top five countries for goat's milk production in 2022 were: - 1. India - 2. Sudan - 3. Pakistan - 4. Bangladesh - 5. France #### JUDGING SCORECARD The ADGA Unified Scorecard for senior does has the following categories and weights: - General appearance 35% - Dairy strength 20% - Body capacity 10% - Mammary system 35% # **Chapter 15: Miscellaneous** # **ACRONYMS** | AYWG | Agricultural Youth Work Guidelines | |---|--| | CTAP | Current Test Day Analysis Program | | DART | Direct Access to Records by Telephone | | DCR | Data collection rating | | DIM | Days in milk | | DRP | Dairy Revenue Protection | | ECM | Energy corrected milk | | ERPA | Estimated relative producing ability | | FCM | Fat corrected milk | | HAYWG | Hired Agricultural Youth Work Guidelines | | ME | Mature equivalent | | RIP | Record in progress | | ROPS | Rollover protection structure | | SMV | Slow moving vehicle | | TQM | Total quality management | | WEIGHTS AND MEASURES | | | Item | Weight | | Gallon of milk | 8.6 pounds | | Quart of milk | 2.15 pounds | | Bushel of corn | 56 pounds | | Bushel of wheat | 60 pounds | | Bushel of barley | | | Bushel of oats | | | Bushel of soybeans | 60 pounds | | Hundredweight (cwt) | 100 pounds | | A kilogram | 2.2 pounds | | U.S. DAIRY INDUSTRY AT A GLANCE IN 20 | 022 | | Number of licensed dairy farms | | | Number of dairy cows* | 9.4 million | | Milk per cow per year | 24,087 pounds | | Milk production | | | Average herd size | | | *The number of dairy cows reached its peak ir | n 1945. | ### 2022 STATE MILK PRODUCTION RANKINGS | Total milk production | Number of dairy cows | Milk per cow | | |-----------------------|--------------------------|--------------|--| | 1. California | 1. California | 1. Michigan | | | 2. Wisconsin | 2. Wisconsin | 2. Colorado | | | 3. Idaho | 3. Idaho | 3. Wyoming | | | 4. Texas | 4. Texas | 4. Texas | | | 5. New York | 5. New York | 5. Idaho | | | Cows per herd | Milk produced per person | | | | 1. New Mexico | 1. Idaho | | | | 2. Arizona | 2. Wisconsin | | | | | | | | 3. South Dakota 4. Vermont5. New Mexico #### 2022 STATE FORAGE PRODUCTION RANKINGS | Corn silage | Alfalfa | |------------------------------|-------------------------------| | 1. Wisconsin | Wisconsin | | 2. Minnesota | 2. Idaho | | California | California | | 4. lowa | 4. Iowa | | 5. New York | 5. South Dakota | #### DHIA 3. Texas 4. Colorado 5. Wyoming The standard length of a DHIA record is 305 days. The meaning of "305-2X-ME" on dairy records is that the lactation record was adjusted to a 305-day lactation, twice a day milking, mature equivalent. If one sees "3X" in a dairy animal's production records, it means the cow was milked three times a day. A DHIA record may be terminated if a cow has dried off, aborted or died. Lactation records in progress can be used in calculation of CDCB Sire Summaries if they have at least one test and are a minimum of 40 days in length. A Data Collection Rating (DCR) is an indicator of the accuracy of production records and is based on the amount of information included in a production record. National DHIA and Quality Certification Services offer 20 DHI test plans to participating producers. Laboratory tests available through DHI include: - Butterfat percentage - Solids-not-fat percentage (SNF) - Somatic cell count (SCC) - Protein percentage - Milk urea nitrogen (MUN) - Johne's disease ### **CULLING** Reasons for culling a dairy cow from the herd include: Low production Injury Disease Reproduction Mastitis Disposition Feet and legs Udder Dairy cattle can be sold privately on farm or in auction sales. Types of auction sales are consignment, dispersal, and reduction. #### PRECISION DAIRY FARMING Precision dairy farming is the use of technologies to measure physiological, behavioral, and production indicators on individual animals to improve management strategies and farm performance. Examples of precision dairy farming include: - Daily milk yield monitoring - Automatic temperature recording devices - Milk component monitoring - Milk conductivity indicators - Pedometers - Automatic estrus detection monitors - Accelerometers - Daily body weight measurements Benefits of precision dairy farming include: - Improved animal health and well-being - Minimized adverse environmental impacts - Increased efficiency - Risk analysis and management - Reduced costs - More objective (less observer bias and influence) - Improved product quality ### **FARM BUSINESS MANAGEMENT** The necessary economic inputs for a dairy operation are land, labor, capital, and management. A cooperative is a firm that is owned by its farmer members, is operated for their benefit, and distributes earnings based on patronage. Risk protection programs available to dairy farmers include: Dairy Margin Coverage Livestock Gross Margin Dairy Revenue Protection Futures contracts #### **FARM BILL** Every five years, the U.S. Congress passes a bundle of legislation called the Farm Bill; it sets national policy for agriculture, nutrition, conservation, and forestry. The Agricultural Improvement Act of 2018 is the name of the 2018 Farm Bill. #### LABOR MANAGEMENT The minimum wage in the U.S. is \$7.25 per hour, effective July 24, 2009. Selection tools that a dairy manager can use when hiring a new employee include: - Application forms - Trial periods Work tests - Reference checks - Interviews The Worker Protection Standard is an Environmental Protection Agency (EPA) program designed to protect the nation's agricultural workers from pesticides. The *Hired Agricultural Youth Work Guidelines* (WAYWG) is designed to help farm employees and supervisors of hired youth reduce the injuries of young workers. The document, *Agricultural Youth Work Guidelines* (AYWG), helps adults assign age- and ability-appropriate tasks to youth. #### **PHOTOPERIOD** Long-day photoperiod, providing 16 to 18 hours of light per day, may stimulate lactating cows to produce 5 pounds more milk per day on
average. Melatonin is the hormone released by the pineal gland in response to shorter day length. Short-day photoperiod exposes cows to 8 hours of light followed by 16 hours of darkness. Dry cows exposed to a short-day photoperiod produce more milk in the next lactation than similar cows exposed to long day photoperiod or natural light conditions. #### ANIMAL WELL-BEING According to the American Veterinary Medical Association, animal welfare is the ethical responsibility of ensuring animal well-being. Animal well-being is the condition in which animals experience good health, can effectively cope with their environment, and are able to express a diversity of species-typical behaviors. The National Dairy Animal Well-Being Initiative is a producer-led effort to build consumer trust and confidence in the dairy industry's commitment to animal well-being. An animal rights activist is a person who believes that an animal's life has the same value as a human's life and has the goal of eliminating all systems that involve the use of animals by humans. #### NATIONAL DAIRY FARM PROGRAM The National Dairy Farmers Assuring Responsible Management (FARM) Program was created by the National Milk Producers Federation in cooperation with Dairy Management, Inc. Its purpose is to show customers that the dairy industry is taking the very best care of cows and the environment, producing safe and wholesome milk, and adhering to the highest standards of workforce development. Standards for the program are revised every three years. #### **FREESTALLS** The main reason that dairy cows refuse to use freestalls is improper size. The parts of a freestall include: - Support post - Neck rail - Stall surface (bedding, mattress) - Stall partition - Brisket board (tube) - Rear curb