2018 Virginia 4-H Dairy Quiz Bowl Materials

Prepared by:
David R. Winston
Extension Dairy Scientist, Youth
Department of Dairy Science (0315)
Litton Reaves Hall, Room 2050, Virginia Tech
175 West Campus Drive
Blacksburg, VA 24061
(540) 231-5693
dwinston@vt.edu
Table of Contents

Chapter 1 ................................................................. Dates in Dairy History ................................................................. 3
Chapter 2 ................................................................. People and Organizations ......................................................... 6
Chapter 3 ................................................................. Dairy Breeds ......................................................................... 9
Chapter 4 ................................................................. Dairy Cattle Judging, Fitting and Showing ................................. 11
Chapter 5 ................................................................. Calf and Heifer Management .................................................. 14
Chapter 6 ................................................................. Nutrition, Feeds and Feeding .................................................. 17
Chapter 7 ................................................................. Lactation and Milking Management ........................................ 26
Chapter 8 ................................................................. Dairy Products and Milk Marketing ........................................ 32
Chapter 9 ................................................................. Miscellaneous .................................................................. 38
Chapter 10 .............................................................. Reproduction ................................................................. 41
Chapter 11 .............................................................. Genetics ............................................................................. 46
Chapter 12 .............................................................. Animal Health ................................................................ 51
Chapter 13 .............................................................. Nutrient Management ......................................................... 59
Appendix ............................................................... Suggested Reading ................................................................. 62

Note

Senior 4-H'ers competing in district and state 4-H dairy quiz bowl contests in Virginia may be quizzed on any of the information contained within this year's study materials.

Junior 4-H'ers will only be responsible for Chapters 1-9.

Disclaimer

This publication is a living document and is updated on an annual basis. Given the pace of change in today’s world, information can become dated very quickly. If you find information that has changed, feel free to contact the editor, so your suggestions may be included in the next revision. Thanks!
### Chapter 1: Dates in Dairy History

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1611</td>
<td>First cows arrived at the Jamestown Colony</td>
</tr>
<tr>
<td>1624</td>
<td>First cows arrived at the Plymouth Colony</td>
</tr>
<tr>
<td>1810</td>
<td>First dairy cooperative in the U.S. organized in Goshen, Connecticut</td>
</tr>
<tr>
<td>1815</td>
<td>First commercial cheese factory established in New York</td>
</tr>
<tr>
<td>1851</td>
<td>First patent for condensed milk</td>
</tr>
<tr>
<td>1856</td>
<td>First commercial butter factory established in New York</td>
</tr>
<tr>
<td>1857</td>
<td>First successful condensory built by Gail Borden in Burrville, Connecticut</td>
</tr>
<tr>
<td>1862</td>
<td>Morrill Act enacted to create the Land Grant College System</td>
</tr>
<tr>
<td>1868</td>
<td>American Jersey Cattle Club founded</td>
</tr>
<tr>
<td>1877</td>
<td>American Guernsey Cattle Club founded</td>
</tr>
<tr>
<td>1878</td>
<td>Centrifugal cream separator invented</td>
</tr>
<tr>
<td>1880</td>
<td>Brown Swiss Breeders Association founded</td>
</tr>
<tr>
<td>1884</td>
<td>Milk bottle invented</td>
</tr>
<tr>
<td>1885</td>
<td>Hoard's Dairyman magazine first published</td>
</tr>
<tr>
<td>1886</td>
<td>Automatic bottle filler and capper patented</td>
</tr>
<tr>
<td>1887</td>
<td>Hatch Act enacted to create state agricultural experiment stations</td>
</tr>
<tr>
<td>1890</td>
<td>Babcock test for butterfat developed</td>
</tr>
<tr>
<td>1895</td>
<td>Pulsator invented</td>
</tr>
<tr>
<td>1904</td>
<td>American Dairy Goat Association organized</td>
</tr>
<tr>
<td>1905</td>
<td>First cow testing association in the U.S. organized in Michigan</td>
</tr>
<tr>
<td>1906</td>
<td>American Dairy Science Association founded</td>
</tr>
<tr>
<td>1914</td>
<td>Smith-Lever Act signed establishing the Cooperative Extension Service</td>
</tr>
<tr>
<td>1916</td>
<td>National Milk Producers Federation founded</td>
</tr>
<tr>
<td>1917</td>
<td>Journal of Dairy Science first published</td>
</tr>
<tr>
<td>1922</td>
<td>Capper-Volstead Act passed by Congress to empower farmers and agricultural producers to market, price, and sell their products through cooperative means</td>
</tr>
<tr>
<td>1926</td>
<td>Dairy Herd Information testing program started</td>
</tr>
<tr>
<td>1931</td>
<td>Hoard's Dairyman cow judging contest begun</td>
</tr>
<tr>
<td>1932</td>
<td>First plastic coated paper milk cartons introduced commercially</td>
</tr>
<tr>
<td>1935</td>
<td>National Cooperative Sire Proving Program initiated</td>
</tr>
</tbody>
</table>
1936
First dairy cattle A.I. organization in Denmark

1937
First list of sires proven in DHIA testing published by USDA
Federal Agricultural Marketing Agreement Act, which provides for federal milk marketing orders, passed

1938
Artificial insemination began in the U.S.
First A.I. cooperative in the U.S. organized in New Jersey by E. J. Perry
First bulk tanks used on farms

1940
American Dairy Association founded
Purebred Dairy Cattle Association formed

1942
National Association of Animal Breeders organized

1943
The PDCA Dairy Cow Unified Score Card was first copyrighted

1945
First edition of National Research Council's Nutrient Requirements of Dairy Cattle published

1949
National Dairy Shrine founded

1951
Computer first used to calculate DHIA records in Utah
First U.S. young sire sampling program established
First successful embryo transfer in dairy cattle
First commercial milk replacer for calves introduced

1953
Frosty, the first U.S. calf resulting from frozen semen, was born

1955
Flavor control equipment introduced commercially

1960
National Mastitis Council founded

1964
Commercial introduction of plastic milk jug
Red and White Dairy Cattle Association organized

1965
National Dairy Herd Information Association organized

1967
World Dairy Expo founded and holds first show

1974
Nutrition labeling of fluid milk products begins

1983
INTERBULL developed
Dairy and Tobacco Adjustment Act created National Dairy Promotion and Research Board and a 15-cent dairy check-off

1989
Animal Model first used for USDA genetic evaluations

1993
Bovine somatotropin, first product of biotechnology for animals, approved

1994
Holstein-Friesian Association officially changes its name to Holstein Association USA, Inc.

1995
Multi-trait Across Country Evaluations (MACE) for bulls implemented by INTERBULL

1998
Dairy Calf and Heifer Association founded

2000
First U.S. commercial robotic milker installed in Wisconsin
Federal Milk Marketing Orders reformed to reduce the number of orders

2001
National Research Council's Nutrient Requirements of Dairy Cattle most recently updated (7th edition)

2002
North American Intercollegiate Dairy Challenge established
2003
Sexed semen becomes commercially available
2006
Dairy Cattle Reproductive Council founded
2009
Most recent revision of the PDCA Dairy Cow Unified Score Card
Genomic predictions of genetic merit officially released by USDA-AIPL
Jersey Youth Academy established

2011
PDCA Showmanship Evaluation Card revised
2013
Council on Dairy Cattle Breeding assumes responsibility for publishing U.S. dairy genetic evaluations
Chapter 2: People and Organizations

**ACRONYMS**

ADA ........................................ American Dairy Association
ADGA.................................. American Dairy Goat Association
ADSA ................................ American Dairy Science Association
AFBF ..................................... American Farm Bureau Federation
AJCA .................................. American Jersey Cattle Association
AMS ....................................... Agricultural Marketing Service
AOAC .................................... American Organization of Analytical Chemists
APHIS ................................. Animal and Plant Health Inspection Service
ARS ....................................... Agricultural Research Service
CCC .................................. Commodity Credit Corporation
CME ...................................... Chicago Mercantile Exchange
CSS ................................. Certified Semen Services
DCHA ................................. Dairy Calf and Heifer Association
DCRC ................................. Dairy Cattle Reproductive Council
DHIA ................................. Dairy Herd Information Association
DHIR ................................ Dairy Herd Information Registry
DRPC ................................. Dairy Records Processing Center
DRINC .......................... Dairy Research, Inc.
EPA .................................. Environmental Protection Agency
FASS ............................. Federation of Animal Science Societies
FCS ................................. Farm Credit Services
FDA .................................. Food and Drug Administration
FSA ..................................... Farm Service Agency
FSIS ............................. Food Safety and Inspection Service
IDF ................................. International Dairy Federation
IDFA ................................. International Dairy Foods Association
IMS ................................ Interstate Milk Shippers
NAAB ............................ National Association of Animal Breeders
NADC .......................... National Animal Disease Center
NAIDC ........................... North American Intercollegiate Dairy Challenge
NASS ........................ National Agricultural Statistics Service

NCIMS.................................. National Conference on Interstate Milk Shipments
NDC........................................ National Dairy Council
NDHIA ...
NDPRB ................................ National Dairy Promotion and Research Board
NMC ................................ Nat. Nationally Mastitis Council
NMPF ................................ National Milk Producers Federation
NRC ................................ National Research Council
NRCS ................................ Natural Resource Conservation Service
PDCA ................................ Purebred Dairy Cattle Association
SWCD ................................ Soil and Water Conservation District
UDIA ................................ United Dairy Industry Association
USDA ................................... United States Department of Agriculture
USDEC ........................ United States Dairy Export Council
YDLI ........................................ Young Dairy Leaders Institute

**DAIRY INDUSTRY PIONEERS**

S. M. Babcock developed the butterfat test that was the basis for DHIA testing.

Gail Borden received the first patent for condensed milk

Dr. Gustaw Delaval invented the centrifugal cream separator.

W. D. Hoard founded Hoard’s Dairyman, the national dairy farm magazine.

Louis Pasteur invented pasteurization; considered the first person to discover that bacteria cause food spoilage and disease.

Dr. Harvey Thatcher invented the milk bottle.
DAIRY INDUSTRY LEADERS

Jim Mulhern is President and CEO of the National Milk Producers Federation.
Corey Geiger is Managing Editor of Hoard's Dairyman.
Jay Mattison is CEO and Administrator of National DHIA.
Mike Opperman is Director of Editorial Content of Dairy Herd Management.
Walt Cooley is Managing Editor of Progressive Dairyman.
David Selner is the Executive Director of National Dairy Shrine.

BREED ASSOCIATION LEADERS

Becky Payne is Executive Director of the U.S. Ayrshire Breeders Association.
Norman Magnussen is Executive Secretary of the Brown Swiss Cattle Breeders Association.
Douglas Granitz is CEO & Executive Secretary of the American Guernsey Association.
John Meyer is CEO/Executive Secretary of Holstein Association USA, Inc.
Neal Smith is Executive Secretary and CEO of the American Jersey Cattle Association.
Kate Smith is Executive Secretary of the American Milking Shorthorn Society.
Mandy Sell is Promotions Manager of the Red & White Dairy Cattle Association.

AGRICULTURAL LEADERS IN GOVERNMENT

Sonny Purdue is the U.S. Secretary of Agriculture.
Sen. Pat Roberts (R-KS) is Chair of the U.S. Senate Agriculture, Nutrition, & Forestry Committee.
Rep. Michael Conaway (R-TX) is Chair of the U.S. House Committee on Agriculture.

DAIRY RELATED ORGANIZATIONS

The mission of National All-Jersey, Inc. is to increase the value of and demand for Jersey milk and to promote equity in milk pricing.
The Holstein Foundation's education leadership development and outreach programs serve youth and young adults representing all breeds of dairy cattle.
The Council on Dairy Cattle Breeding oversees approval of records systems standards. The council appoints the group to certify performance of DHI's and other herd record providers.
The four Dairy Records Processing Centers (DRPC's) in the U.S. are:
  Agritech Analytics
  AgSource Cooperative Services
  DHI-Provo
  Dairy Records Management Systems

Dairy Farmers of America (DFA) is the largest dairy cooperative in the U.S.
Nestlé USA is the largest processor and distributor of milk and dairy products in the U.S.
Nestlé of Switzerland is the top dairy company in the world based on dairy sales.
Danone is the world's largest yogurt maker.
The New Zealand Dairy Board is the world's largest private exporter of dairy products.

Dairy Commodities traded at the Chicago Mercantile Exchange daily are:
  Block and barrel cheese (cash)
  Butter futures
  Class III and Class IV milk futures and options

Dairy Management, Inc. (DMI) is a nonprofit organization formed by the National Dairy Board and United Dairy Industry Association. It conducts programs in integrated marketing, communications, promotion, and research for U.S. dairy farmers. Organizations under the DMI umbrella are:
  American Dairy Association
  National Dairy Council
  U.S. Dairy Export Council
The American Dairy Science Association (ADSA) is an international organization of educators, scientists, and industry representatives who are committed to advancing the dairy industry. The *Journal of Dairy Science* is the organization’s official scientific publication. ADSA has two divisions in its organizational structure – Dairy Foods and Dairy Production.

The National Dairy Shrine Museum is located in Fort Atkinson, Wisconsin.

**ORGANIZATION HEADQUARTERS**

American Dairy Science Association  
Champaign, Illinois

Council on Dairy Cattle Breeding  
Bowie, Maryland

Dairy Calf and Heifer Association  
New Prague, Minnesota

Hoard’s Dairyman  
Fort Atkinson, Wisconsin

Milk and Dairy Beef Quality Assurance Center  
Stratford, Iowa

National Dairy Shrine  
Denmark, Wisconsin

National DHIA  
Verona, Wisconsin

National Milk Producers Federation  
Arlington, Virginia

**EVENT LOCATIONS**

All-American Dairy Show  
Harrisburg, Pennsylvania

Eastern States Exposition (The Big E)  
West Springfield, Massachusetts

National 4-H Dairy Conference  
Madison, Wisconsin

North American International Livestock Exposition  
Louisville, Kentucky

World Dairy Expo  
Madison, Wisconsin
Chapter 3: Dairy Breeds

The seven major breeds recognized by the Purebred Dairy Cattle Association are Ayrshire, Brown Swiss, Guernsey, Holstein, Jersey, Milking Shorthorn, and Red & White.

<table>
<thead>
<tr>
<th>Breed</th>
<th>Place of origin</th>
<th>Arrived in the United States</th>
<th>Mature bodyweight</th>
<th>Permanent ID method</th>
<th>Association name</th>
<th>Association headquarters</th>
<th>Breed magazine</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>AYRSHIRE</strong></td>
<td>County of Ayr, Scotland</td>
<td>1822</td>
<td>1,200 lb.</td>
<td>Photo or sketch</td>
<td>U.S. Ayrshire Breeders Association</td>
<td>Columbus, Ohio</td>
<td>Ayrshire Digest</td>
</tr>
<tr>
<td><strong>GUERNSEY</strong></td>
<td>Isle of Guernsey</td>
<td>1840</td>
<td>1,250 lb.</td>
<td>Photo, sketch, ear tattoo</td>
<td>American Guernsey Association</td>
<td>Columbus, Ohio</td>
<td>Guernsey Breeders Journal</td>
</tr>
<tr>
<td><strong>BROWN SWISS</strong></td>
<td>Switzerland</td>
<td>1869</td>
<td>1,400 lb.</td>
<td>Ear tattoo</td>
<td>Brown Swiss Cattle Breeders Association</td>
<td>Beloit, Wisconsin</td>
<td>Brown Swiss Bulletin</td>
</tr>
<tr>
<td><strong>HOLSTEIN</strong></td>
<td>Netherlands and Germany</td>
<td>1852</td>
<td>1,400 lb.</td>
<td>Photo or sketch</td>
<td>Holstein Association USA, Inc.</td>
<td>Brattleboro, Vermont</td>
<td>Holstein Pulse</td>
</tr>
</tbody>
</table>

Brown Swiss cattle were originally used for milk, meat and draft purposes. Today's Brown Swiss cattle are known for:

- High protein to fat ratio
- Longevity
- Sound feet and legs
- Having few health problems

Guernsey milk is known for its golden color.

Holsteins make up about 90% of the U.S. dairy cow population.

The three colors found in registered Holstein cattle are black, red, and white.

On average, Holsteins produce the most milk per cow.
JERSEY

Place of origin .................................................. Isle of Jersey
Arrived in the United States ................................. 1850s
Mature bodyweight ............................................. 1,000 lb.
Permanent ID method ........................................ Ear tag or tattoo
Association name .............................................. American Jersey Cattle Association
Association headquarters ............................. Reynoldsburg, Ohio
Breed magazine .................................................. Jersey Journal

Jerseys generally produce milk with the highest fat and protein content.

MILKING SHORTHORN

Place of origin .................................................. England
Arrived in the United States ................................. 1783
Mature bodyweight ............................................. 1,400 lb.
Permanent ID method ........................................ Ear tattoo
Association name .............................................. American Milking Shorthorn Association
Association headquarters ............................ Beloit, Wisconsin
Breed magazine .................................................. Milking Shorthorn Journal

RED & WHITE

Association name .............................................. Red and White Dairy Cattle Association
Association headquarters ........................... Madison, Wisconsin
Breed magazine .................................................. The Red Bloodlines

The Red and White Dairy Cattle Association has an open herdbook with different levels of registry. The organization allows different breeds in their herdbook, not just red and white Holsteins.

NOTABLE ANIMALS

Brown Swiss production leader
  Lost Elm Prelude Pixy ET (65,430 lb.)
Holstein production leader
  Selz-Pralle Aftershock 3918 (78,170 lb.)
Jersey production leader
  Mainstream Barkly Jubilee (55,590 lb.)
World lifetime milk production record holder
  Gillette E Smurf
Queen Mother of the Brown Swiss breed
  Jane of Vernon
First bull to produce one million units of semen
  Fisher-Place Mandingo-TW

DAIRY GOATS

Capriculture is the study of goats and goat husbandry.
Breed magazine .................................................. The Red Bloodlines

The American Dairy Goat Association is third in total dairy animals registered annually in the United States, following the Holstein and Jersey organizations.
Chapter 4: Dairy Cattle Judging, Fitting and Showing

**PDCA DAIRY COW UNIFIED SCORECARD**

<table>
<thead>
<tr>
<th>Category</th>
<th>Points</th>
<th>Traits in Priority Order</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame</td>
<td>15</td>
<td>Rump (5)</td>
<td>Stature (2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Front end (5)</td>
<td>Breed characteristics (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Back/loin (2)</td>
<td></td>
</tr>
<tr>
<td>Dairy Strength</td>
<td>25</td>
<td>Ribs (8)</td>
<td>Neck (2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chest (6)</td>
<td>Withers (2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Barrel (4)</td>
<td>Skin (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thighs (2)</td>
<td></td>
</tr>
<tr>
<td>Rear Feet and Legs</td>
<td>20</td>
<td>Movement (5)</td>
<td>Thurl position (2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rear legs – side view (3)</td>
<td>Hocks (2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rear legs – rear view (3)</td>
<td>Bone (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Feet (3)</td>
<td>Pasterns (1)</td>
</tr>
<tr>
<td>Udder</td>
<td>40</td>
<td>Udder depth (10)</td>
<td>Fore udder (5)*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rear udder (9)*</td>
<td>Teats (3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Teat placement (5)</td>
<td>Udder balance and texture (3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Udder cleft (5)</td>
<td></td>
</tr>
</tbody>
</table>

*In Holsteins, fore & rear udder are weighted equally at 7 points each.*

**DAIRY HEIFER SCORECARD (Unofficial)**

<table>
<thead>
<tr>
<th>Category</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame</td>
<td>40</td>
</tr>
<tr>
<td>Dairy Strength</td>
<td>20</td>
</tr>
<tr>
<td>Feet and Legs</td>
<td>30</td>
</tr>
<tr>
<td>Body Capacity</td>
<td>10</td>
</tr>
</tbody>
</table>

**FINAL CLASSIFICATION SCORES**

<table>
<thead>
<tr>
<th>Brown Swiss</th>
<th>Holstein</th>
<th>Jersey</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>Excellent</td>
<td>Excellent</td>
</tr>
<tr>
<td>Very Good</td>
<td>Very Good</td>
<td>Very Good</td>
</tr>
<tr>
<td>Good Plus</td>
<td>Good Plus</td>
<td>Desirable</td>
</tr>
<tr>
<td>Good</td>
<td>Good</td>
<td>Acceptable</td>
</tr>
<tr>
<td>Fair</td>
<td>Fair</td>
<td>Poor</td>
</tr>
<tr>
<td>Poor</td>
<td>Poor</td>
<td>Poor</td>
</tr>
</tbody>
</table>

2018 Virginia 4-H Dairy Quiz Bowl Materials
ANATOMY RELATED TO JUDGING

The hock is used as the reference point to determine the height of the udder floor.

The parts of a cow's anatomy that may be twisted to one side and called "wry" are the face and tail.

The main udder supports are the median suspensory ligament, lateral suspensory ligament, and skin.

The median suspensory ligament is the major support of the udder and divides it in half when viewed from the rear.

The subcutaneous abdominal veins are also called the milk veins.

JUDGING CONTESTS

The Hoard's Dairyman Cow Judging Contest consists of 5 picture classes. The contest begins with the January 10 issue each year.

The National 4-H Dairy Cattle Judging Contest is held at the World Dairy Expo in Madison, Wisconsin.

There are four animals in a class in a 4-H dairy judging contest.

The All-American Invitational Youth Dairy Cattle Judging Contest is held at the All-American Dairy Show in Harrisburg, Pennsylvania.

The (NAILE) Invitational Youth Dairy Judging Contest is held at the North American International Livestock Exposition in Louisville, Kentucky.

HEIFER CLASSES

The individual heifer classes in a dairy show are:
- Spring heifer calf
- Winter heifer calf
- Fall heifer calf
- Summer yearling heifer
- Spring yearling heifer
- Winter yearling heifer
- Fall yearling heifer

SHOWMANKSHIP

When exhibiting a dairy animal, the parading circle before the judge should move clockwise.

When showing a dairy heifer, the rear leg nearest the judge should be placed farther back than the other.

When showing a dairy cow, the rear leg nearest the judge should be placed farther forward than the other.

One should lead a dairy animal from the left side of the animal when viewed from the rear.

SHOW ETHICS

A dairy animal can be disqualified from being shown in the show ring for the following reasons:
- Blind quarter
- Permanent lameness
- Total blindness
- Freemartin heifer
- Tampering to conceal faults

Ohio was the first state to make tampering with show cows a crime.

PDCA SHOWMANKSHIP EVALUATION CARD

Slight Discriminations

Exhibitor
- Inappropriate halter
- Lead strap tightly looped
- Walks slowly backward into the ring
- Sidesteps when leading calf
- Has stiff outstretched arm
- Has poor posture – either overly stiff or slumped, sloppy
- Improper head carriage, animal's nose is too high
- Calf's head is not turned slightly toward judge when hide is felt
- Stepping on or kicking at the animal's front feet
- Inappropriate size of calf for competitor

Animal
- Minor instances of animal not handled well
- Is not alert
- Muzzle is not wiped clean
- Switch is not brushed and fluffed
- Clipping lines not properly blended
Moderate Discriminations

**Exhibitor**
- Not wearing white clothing or show-approved professional attire
- Inappropriate or unprofessional attire that draws attention to the exhibitor
- Wearing clothing with farm or commercial advertising/logos
- Does not know birth date, fresh date, breeding date, due date
- Unable to recognize type faults of the animal
- Halter not fitting or put together properly
- Holding the lead strap too far from the halter
- Has fingers in ring of the halter
- Failure to hold throat when needed
- Improper head carriage, animal's head held too low
- Unable to show animal to best advantage
- Slow response to judge or ring official
- Inattentiveness
- Watching the judge too intently
- Over-showing
- Leading too slowly
- Has elbow or hands up
- Is too far to outside or inside of ring
- Incorrect spacing to the animal in front when on parade
- Failure to switch rear legs when the judge moves around the animal
- Doesn't walk quickly into line
- Crowding or bumping other animals when pulled in line
- Leaving extra space in line
- Failure to maintain a straight lineup
- Moves excessively in line
- Unable to back up animal
- Legs incorrectly posed
- Does not keep animal straight from head to tail
- Chewing gum

**Animal**
- Legs not clipped
- Dirt/dust in hair coat
- Dirt/wax in ears
- Feet not cleaned
- Excessive use of hair sprays, powder and other fitting products
- Clipping too early; hair appears too long
- Incomplete clipping
- Excessive clipping

Serious Discriminations

**Exhibitor**
- Lead strap looped & fastened
- Striking the animal
- Positioning animal's rear legs by stepping on rear feet
- Fusses with or moves calf to the extreme
- Minor instances of unsportsmanlike conduct
- Is late to class
- Wearing inappropriate shoes
- Chewing tobacco
- Carries or talks on a cell phone

**Animal**
- Animal causing disturbances to others

Disqualifications

- Violations of PDCA Show Ring Code of Ethics
- Unsportsmanlike conduct
- Repeated striking of the animal

Recommendation for Evaluation of the Topline

- Topline is groomed, doesn't distract from the animal's overall appearance, conforms to the guidelines of the PDCA Showring Code of Ethics
Chapter 5: Calf and Heifer Management

ACRONYMS

ADG ..............................................................Average daily gain
AFC ..............................................................Age at first calving

ECONOMICS

Heifers account for 15 to 20 percent of total farm expenses on many dairy operations.
Feed costs account for 55 to 60 percent of the total cost of raising dairy replacement heifers.

PROJECT SELECTION

Important points to consider when selecting a calf as a project animal include:
  Age
  Breed
  Health
  Pedigree
  Conformation

IDENTIFICATION

Methods commonly used to identify calves include:
  Eartag
  Photo
  Sketch
  Tattoo
  Freeze branding

LIQUID DIET

Liquid diet choices for pre-weaned calves include milk replacer, whole milk, and colostrum.

A pre-weaned calf should be fed 10-17 percent of its body weight in milk or milk replacer daily.

When a calf nurses, milk travels through the esophageal groove to the omasum and abomasum. It bypasses the rumen and reticulum. In a newborn calf, the reticulum and rumen are not yet fully developed.

COLOSTRUM

Colostrum is milk that is secreted during the first two to three days after calving.

Colostrum contains antibodies that provide immunity from disease for calves. It contains a higher level of protein than normal milk.

A newborn calf should be fed colostrum for the first three days of life.

If colostrum is pasteurized, it should be heated to 140°F for 60 minutes.

The critical factors in colostrum management are quantity, quality, timing, and cleanliness.

Storage options for excess colostrum are:
  Add preservative acid
  Fermented
  Frozen
  Refrigerated

Frozen colostrum may be safely stored for a year.

The Brix refractometer and colostrometer are on-farm tools for estimating colostrum quality.

Conditions that can result in poor quality colostrum include:
  Cows is dry less than 3-4 weeks
  Pre-milking
  Leaking teats
  Dirty udder and teats
  Young cow
**MILK REPLACER**

Conventional milk replacer should contain 20% crude protein and 20% fat.

Accelerated milk replacer should contain 26-30% crude protein and 15-25% fat.

Recommended protein sources for milk replacers are:
- Casein
- Modified wheat protein
- Dried skim milk
- Protein modified soy flour
- Dried whey
- Soy protein concentrate
- Dried whey product
- Soy protein isolate
- Dried whey protein concentrate

**WEANING**

Weaning is the act of taking a young animal off of milk as the main source of nutrition.

Grain intake should be the main criterion used for deciding when to wean a calf.

Before weaning a calf should eat at least 2-3 pounds of grain per day for three consecutive days.

**CALF STARTER**

Calf starter should contain 18-22% crude protein.

There are several types of calf starters available. They are:
- Commercial textured calf starters
- Homemade grind and mix starters
- Commercial pelleted starters

**CALF HOUSING**

Calf housing should be clean, dry, draft-free and well ventilated.

Warm calf housing is housing in which environmental temperature is controlled.

The temperature in cold calf housing varies with the outside temperature.

Systems of calf housing include:
- Calf Hutch
- Pens on the floor
- Counter-slope system
- Elevated stalls
- Cold calf housing system

Advantages of calf hutches include:
- They are easily moved
- They provide better ventilation
- They prevent disease from spreading from one calf to another

**GROWTH**

Calves should at least double their birth weight by 8 weeks of age.

Average daily gain (ADG) is a significant factor in monitoring growth rates in dairy heifers.

Body size is the most important factor to consider in determining when to breed a heifer for the first time.

Heifers usually show heats at 40% of mature bodyweight. They should start being bred at 55% of mature bodyweight and calve for the first time at approximately 82% of mature bodyweight.

Compensatory growth is a term used to describe a period of increased growth rate that follows a growth restriction imposed earlier in the heifer’s life.
Calf Health

The leading causes of death in young calves are scours and pneumonia.

The major causes of calf scours include:
- Inadequate colostrum
- Overfeeding
- Overcrowding
- Poor quality colostrum
- Poor quality milk replacer
- Inadequate ventilation
- Unsanitary calving conditions

Physical factors contributing to pneumonia in calves are drafts, chilling, dampness, and poor ventilation.

Places where pathogenic organisms may gain entry into a newborn calf’s body are the mouth, navel, and nose.

Signs of illnesses in calves include:
- Poor appetite
- Nasal discharge
- Lack of energy
- Cough
- Drooping ears
- Elevated temperature
- Watery manure
- Dull eyes

A 7% iodine solution should be painted on the calf’s navel soon after birth to seal the entrance from disease causing organisms.

A calf is 2 to 3 weeks old when it begins to chew its cud.

Calves should be dehorned at about three weeks of age.

Methods of dehorning calves are paste (caustic potash), cut or gouge (Barnes type dehorner), and electric.

Extra teats are also known as supernumerary teats. Between 30 and 40 percent of heifers born have extra teats. They should be surgically removed around 4 months of age.

Custom Heifer Rearing

Custom heifer growing offers several advantages to dairy producers who have been raising their own replacements including:
- Decreased labor requirement
- Increased milking herd management
- Increased facility capacity for milking cows
- Herd expansion without capital investment with use of existing facilities
- Increased feed inventory for milking cows
- Potential for better replacement heifers

Major elements associated with a contract for raising dairy replacements are:
- Time period
- Amendments, renegotiations, and renewal
- Billing and payment procedures
- Conditions for termination of agreement
- Definition of each party’s responsibility

Methods of charging for heifer grower services include:
- Per animal per day
- Per pound of gain
- Option to purchase
- Per animal
- Feed plus yardage
### ACRONYMS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>Amino acid</td>
</tr>
<tr>
<td>ADF</td>
<td>Acid detergent fiber</td>
</tr>
<tr>
<td>ADIN</td>
<td>Acid detergent insoluble nitrogen</td>
</tr>
<tr>
<td>ADP</td>
<td>Adenosine diphosphate</td>
</tr>
<tr>
<td>AMP</td>
<td>Adenosine monophosphate</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>BCS</td>
<td>Body condition score</td>
</tr>
<tr>
<td>BHBA</td>
<td>Beta hydroxybutyrate</td>
</tr>
<tr>
<td>BUN</td>
<td>Blood urea nitrogen</td>
</tr>
<tr>
<td>CF</td>
<td>Crude fiber</td>
</tr>
<tr>
<td>CP</td>
<td>Crude protein</td>
</tr>
<tr>
<td>DCAD</td>
<td>Dietary cation-anion difference</td>
</tr>
<tr>
<td>DE</td>
<td>Digestible energy</td>
</tr>
<tr>
<td>DM</td>
<td>Dry matter</td>
</tr>
<tr>
<td>DMI</td>
<td>Dry matter intake</td>
</tr>
<tr>
<td>FFA</td>
<td>Free fatty acid</td>
</tr>
<tr>
<td>ME</td>
<td>Metabolizable energy</td>
</tr>
<tr>
<td>MUN</td>
<td>Milk urea nitrogen</td>
</tr>
<tr>
<td>NDF</td>
<td>Neutral detergent fiber</td>
</tr>
<tr>
<td>NDIN</td>
<td>Neutral detergent insoluble nitrogen</td>
</tr>
<tr>
<td>NE</td>
<td>Net energy</td>
</tr>
<tr>
<td>NEL</td>
<td>Net energy for lactation</td>
</tr>
<tr>
<td>NEFA</td>
<td>Non-esterified fatty acid</td>
</tr>
<tr>
<td>NFC</td>
<td>Nonfiber carbohydrates</td>
</tr>
<tr>
<td>NIR</td>
<td>Near-infrared reflectance</td>
</tr>
<tr>
<td>NPN</td>
<td>Nonprotein nitrogen</td>
</tr>
<tr>
<td>NSC</td>
<td>Nonstructural carbohydrates</td>
</tr>
<tr>
<td>PUN</td>
<td>Plasma urea nitrogen</td>
</tr>
<tr>
<td>RDP</td>
<td>Rumen-degradable protein</td>
</tr>
<tr>
<td>RFQ</td>
<td>Relative forage quality</td>
</tr>
</tbody>
</table>

### DEFINITIONS

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acid</td>
<td>A substance that has a low pH (below 7.0)</td>
</tr>
<tr>
<td>Alkaline</td>
<td>A substance that has a high pH (above 7.0)</td>
</tr>
<tr>
<td>Amino acids</td>
<td>Building blocks of true proteins</td>
</tr>
<tr>
<td>Anion</td>
<td>A negatively charged ion or particle</td>
</tr>
<tr>
<td>Annuals</td>
<td>Plants that are seeded each year and whose growth are completed in one crop year</td>
</tr>
<tr>
<td>Baleage</td>
<td>Wrapped, round bales of silage</td>
</tr>
<tr>
<td>Body condition scoring</td>
<td>A system to evaluate the thinness or fatness of dairy cattle</td>
</tr>
<tr>
<td>Buffer</td>
<td>Any substance that can reduce changes in pH when an acid or alkali is added</td>
</tr>
<tr>
<td>Cation</td>
<td>A positively charged ion or particle</td>
</tr>
<tr>
<td>Chyme</td>
<td>Feed material found in the small intestine</td>
</tr>
<tr>
<td>Crude protein</td>
<td>Total protein in a feed</td>
</tr>
<tr>
<td>Cud</td>
<td>Feed that a cow has regurgitated and is being re-chewed</td>
</tr>
<tr>
<td>Digestible energy</td>
<td>The total energy in a feedstuff minus the energy lost in feces</td>
</tr>
<tr>
<td>Dry matter</td>
<td>Portion of a feed that remains after water has been removed by drying in an oven</td>
</tr>
</tbody>
</table>
Eructation
Belching of gas by ruminant animals as a natural way for releasing gases produced during the fermentation process

Esophagus
Tube that connects the mouth to the rumen

Forage
Vegetative portion of plants in a fresh, dried, or ensiled state that is fed to livestock

Green chop
Forage harvested (cut and chopped) in the field and fed directly to livestock

Hay
Dried forage (grasses, alfalfa, clovers) used for feeding farm animals

Mastication
Chewing

Metabolizable energy
Digestible energy minus the energy lost in urine and gas

Negative energy balance
Occurs when the amount of energy taken into the body is less than the amount of energy required by the body

Net energy
Actual amount of energy the body can use for growth, lactation, reproduction, and body maintenance

Nutrient
Any chemical substance that provides nourishment to the body

Palatability
Taste or likability of a feedstuff

Papillae
Tiny, finger-like projections that line the wall of the rumen

Perennials
Plants that have a life cycle of more than two years

Rumen degradable protein
Protein or nitrogen that is degraded in the rumen by microorganisms and incorporated into microbial protein or freed as ammonia

Rumen undegradable protein
Protein that passes through the rumen and is unchanged by microbes; also called by-pass protein

Rumination
Process in ruminants when semi-liquid ingested feed is regurgitated into the esophagus, re-chewed, and re-swallowed for further digestion

Saliva
Watery substance formed in the mouths of animals, secreted by the salivary glands

Silage (Ensilage)
Green forage that is chopped and put into a silo, where it is packed or compressed to exclude air and undergoes an acid fermentation (lactic and acetic acids) that retards spoilage

Total mixed ration
A blend of all feedstuffs (forages & concentrates) in one feed

Villi
Small projections that line the small intestine wall

SALIVA
Saliva is the major buffer for maintaining optimum rumen pH.
The mature dairy cow produces 50 to 80 quarts of saliva per day.
The functions of saliva are to:
  - Moisten food
  - Provide fluid base for many nutrients
  - Lubricate food
  - Provide the proper environment for bacterial growth
  - Act as a buffer
RUMINANT
The dairy cow is a ruminant, meaning it has a four-compartment stomach.
The stomach compartments are the reticulum, rumen, omasum, and abomasum.

RETICULUM
The reticulum is also known as the honeycomb.
The reticulum is the stomach compartment located closest to the heart.
Hardware disease occurs in the reticulum.

RUMEN
The rumen is also known as the fermentation vat.
The rumen is the largest of the cow’s stomach compartments. It makes up 25% of the newborn calf’s stomach capacity and 80% of the mature cow’s stomach capacity.
Fermentation is the primary process that takes place in the rumen.
Bacteria, fungi, and protozoa are types of organisms that live in the rumen and digest feed.
Carbon dioxide and methane are gases produced in the rumen.
The ideal rumen pH is 5.9 to 6.2. The rumen is acidotic when rumen pH drops below 5.9.

OMASUM
The omasum is also called manyplies.
The main function of the omasum is the dehydration of partially digested feed.

ABOMASUM
The abomasum is the enzyme and acid secreting portion of the ruminant stomach.
The abomasum is also called the true stomach.
The primary acid found in the abomasum is hydrochloric acid.

SMALL INTESTINE
The segments of the small intestine are the duodenum, jejunum and ileum.
Fats are broken down in the small intestine.
The liver is the first organ to receive blood from the small intestine.
The pancreas secretes digestive enzymes into the small intestine.

LARGE INTESTINE
The main functions of the large intestine are water absorption and storage of waste materials.

NUTRIENTS
The main processes for which a cow uses nutrients from her feed are maintenance, growth, production and reproduction.
The nutrients contained in feedstuffs are carbohydrates, fats, protein, minerals, vitamins, and water.

ENERGY
Major sources of energy for the dairy cow are fats and carbohydrates.
Energy is most likely to be the limiting nutritional requirement for the high producing dairy cow.
A calorie is a unit of measure of energy in a feed; it is the amount of energy required to raise 1 gram of water 1°C.

FATS
Fats are the most concentrated energy source in dairy cattle rations. They contain 2.25 times the energy value of starch.
The recommended maximum level of fat in a lactating cow’s ration is 5 to 7% of ration dry matter.
The forms of fat used in dairy cattle rations include animal fats (tallow), protected fats (calcium soaps), and whole oil seeds (whole cottonseeds, whole soybeans).
Fatty acids are the building blocks of fats and lipids.
Saturated fatty acids are completely hydrogenated; each carbon atom is associated with the maximum number of hydrogen atoms. They have no double bonds.

Unsaturated fatty acids are not completely hydrogenated. They have one or more double bonds. Whole oil seeds contain high levels of unsaturated fatty acids.

**CARBOHYDRATES**

The basic elements contained in carbohydrates are carbon, hydrogen, and oxygen.

Cellulose and hemicellulose are structural carbohydrates that the cow can use as a source of energy.

Starch, sugar, and pectin are nonstructural carbohydrates that are highly digestible parts of feeds.

**VOLATILE FATTY ACIDS**

Volatile fatty acids are the main products of carbohydrate digestion by rumen microorganisms.

The main volatile fatty acids produced in the rumen are acetic acid (acetate), butyric acid (butyrate), and propionic acid (propionate).

Acetic acid is the primary source of energy and milkfat. Propionic acid is a precursor for glucose; it is produced from digestion of starch and grain.

**PROTEIN**

The basic elements that are present in all proteins are carbon, hydrogen, oxygen, and nitrogen.

Most proteins contain 16% nitrogen.

To determine the crude protein content of a feed, multiply the nitrogen fraction by 6.25.

If a farmer said he was feeding a 16% dairy feed, the 16% is referring to crude protein.

Proteins derived from poultry, marine or vegetable sources may be used in ruminant rations.

Proteins derived from ruminant sources may not be used in ruminant rations because of concerns about Mad Cow Disease.

**AMINO ACIDS**

There are 20 standard amino acids. The cow’s sources of amino acids are rumen undegradable protein and rumen microbes.

Amino acids are classified as essential or nonessential. Essential amino acids must be provided in the diet. The ten essential amino acids for milking cows are:

- Arginine
- Histidine
- Isoleucine
- Leucine
- Lysine
- Methionine
- Phenylalanine
- Threonine
- Tryptophan
- Valine

The most limiting amino acids in dairy cattle nutrition are lysine and methionine.

Nonessential amino acids are produced by the cow and do not have to be provided in the diet.

**MINERALS**

Macrominerals are generally required in relatively large quantities. Requirements are usually stated as a percent of ration dry matter. The macrominerals are:

- Calcium
- Magnesium
- Potassium
- Sulfur
- Chlorine
- Phosphorus
- Sodium

Potassium is the mineral needed by the dairy cow in the largest quantity.
Microminerals (trace minerals) are required in relatively small quantities. Requirements are usually stated in parts per million (ppm). The microminerals are:
- Cobalt
- Iodine
- Manganese
- Zinc
- Copper
- Iron
- Selenium

**VITAMINS**

Vitamins are classified as either fat-soluble or water-soluble.

The fat-soluble vitamins are Vitamin A, Vitamin D, Vitamin E, and Vitamin K.

Beta-carotene, found in most legumes and grasses, is a precursor of Vitamin A.

Vitamin E has functions similar to selenium.

Vitamin K plays a role in the coagulation of blood.

The water-soluble vitamins are the B complex vitamins and Vitamin C.

The B Complex vitamins are:
- Thiamine (B1)
- Niacin (B3)
- Biotin (B7)
- Choline
- Riboflavin (B2)
- Pantothenic Acid (B5)
- Folic Acid (B9)
- B12

Vitamin C is also known as ascorbic acid.

Vitamins are measured in International Units (IU).

**WATER**

An average dairy cow drinks 30 to 50 gallons of water each day.

Performance (growth or milk production) will be reduced the quickest through a lack of water as compared to other nutrients.

A dairy cow excretes or loses water through breathing, feces, milk, sweat, and urine.

Factors influencing the amount of water consumed by dairy cattle include:
- Body size
- Water quality
- Diet
- Environmental temperature
- Relative humidity
- Milk production
- Water temperature

Peak times for water consumption are as soon as cows leave the milking parlor and when cows consume large amounts of dry matter (at feeding).

Physiological functions of water in the body include:
- A medium to transport nutrients
- To carry waste products to the point of excretion
- Functions as a universal solvent
- To cool the body at high environmental temperatures
- Serves as a fluid to lubricate joints
- Serves as a substrate for metabolic reactions
- Serves as a fluid base for milk

**NUTRIENT REQUIREMENTS**

Many factors are required to determine nutrient requirements of a lactating cow including:
- Body weight
- Fat test
- Body condition
- Age
- Stage of lactation
- Environmental temperature
- Milk production level
- Reproductive status
**LEGUMES**

Legumes used in dairy rations include:
- Alfalfa
- Clover
- Peanuts
- Soybeans
- Bird’s Foot Trefoil
- Lespedeza
- Peas
- Vetch

Nitrogen fixing bacteria are associated with legumes.

Phosphorus is critical for the establishment of legumes.

**HAY**

Immature hay is more valuable as a feed for dairy cows than mature hay because of:
- Higher nutrient content
- Greater palatability
- Higher digestibility
- Lower fiber

Relative feed value (RFV) combines digestibility and intake estimates into one number for an easy and effective way to identify and market quality hay. RFV is expressed as a percent compared to full bloom alfalfa at 100 percent RFV.

**SILAGE**

Phases of silage fermentation are aerobic, anaerobic, stable, and feeding.

Types of silage storage facilities include:
- Bunker silo
- Upright/tower silo
- Oxygen limiting silo
- Trench silo
- Plastic bag

The minimum recommended feeding rate from an upright silo is 2-4 inches per day in the winter and 4-6 inches per day in the summer. It is at least 6 inches per day for bunker silos.

Plastic is generally considered the best material for covering a bunker silo.

Even distribution of silage within the silo to exclude air is an important part of making good quality silage.

Valuable nutrients that can be lost in seepage from a silo are minerals, organic acids, protein, and soluble sugars.

Lactic acid is the most desirable acid produced during ensiling. Butyric acid is an undesirable acid.

Heat damage in haylage is indicated by dark color and burnt odor.

**CORN SILAGE**

Corn silage has the best fermentation and preservation characteristics with minimal seepage when harvested at 35% dry matter.

The desired pH or properly fermented corn silage is 4.0 or less.

Cold flow ammonia may be added to corn silage to increase the crude protein content.

Kernel processing of corn silage increases starch digestibility.

The recommended theoretical length of cut (TLC) for corn silage harvested with a conventional harvester is ⅜ inch. If harvested with a harvester fitted with a kernel processor, TLC should be ¾ inch.

Characteristics of corn that have been introduced through transgenics include:
- Corn borer resistance
- Herbicide resistance
- High oil content
- Waxy corn

Bt corn hybrids were genetically engineered to provide resistance to the European corn borer.

Brown midrib corn varieties have lower lignin concentrations, which increase fiber digestibility.
FORAGE TESTING

Forage testing is the most reliable way of knowing the nutrient content of forages. Forage testing methods include NIR and wet chemistry. A forage analysis report commonly contains:
- Dry matter
- Total digestible nutrients
- Neutral detergent fiber
- Crude protein
- Net energy lactation
- Ash (mineral matter)
- Soluble protein
- Acid detergent fiber

When sampling square bales of hay for forage testing, 20 bales should be sampled.

A dry matter determination may be done quickly and easily on a forage sample at home using a microwave oven, gram scale, paper plate and water glass.

FIBER

Fiber is needed in dairy cattle rations to:
- Maximize dry matter and energy intakes
- Maintain normal milkfat percentage
- Maintain normal rumen function
- Protect against post-calving difficulties

Digestibility of plant fiber decreases as the plant increases in age and/or in hot weather.

Acid detergent fiber (ADF) consists of cellulose, lignin, and lignified nitrogen components (heat damaged protein).

The acid detergent fiber content of a high producing cow’s ration should be 18-21%.

Neutral detergent fiber (NDF) is used to predict feed intake. The compounds that make up neutral detergent fiber (NDF) are cellulose, hemicellulose, and lignin.

FORAGE PARTICLE SEPARATOR

A forage particle separator can be used to:
- Evaluate whether there is enough long fiber in the ration
- Check for over mixing and particle size reduction
- Develop baseline particle size information for comparison
- Check ration uniformity
- Determine optimum mixing order
- Evaluate whether particle size changes with hay quality
- Check for sorting

BY-PRODUCT FEEDS

By-products can be successfully used as feed for dairy cattle. Before including a byproduct in the ration, the following factors should be considered:
- Nutrient composition
- Availability
- Storage
- Ability to feed/use
- Cost
- Palatability
- Consistency

By-product feedstuffs include:
- Cottonseed hulls
- Cottonseed meal
- Distillers grains
- Wheat middlings
- Dried brewers grain
- Hominy feed
- Peanut meal
- Whole cottonseed
- Soybean hulls
- Soybean meal
- Wet brewers grain

IONOPHORES

Ionophores alter rumen fermentation by boosting the production of propionic acid and reducing the production of acetic acid. Examples are Lasalocid and Monensin. Monensin is approved for use in lactating dairy cattle, but Lasalocid is not.
MINERAL SUPPLEMENTS

Common mineral supplements include:
- Dicalcium phosphate
- Magnesium oxide
- Potassium chloride
- Limestone
- Monocalcium phosphate
- White salt

Limestone is an excellent source of calcium.

BUFFERS

Reasons one might add buffers to a dairy cow's ration include:
- Increase fat test
- Improve digestibility
- Aid in adjusting to high-energy ration
- Maintain acid-base balance
- Improve milk quality
- Improve intake

Buffers commonly used in dairy rations include:
- Limestone (calcium carbonate)
- Sodium bentonite
- Magnesium oxide
- Sodium bicarbonate

DIETARY CATION-ANION DIFFERENCE

Dietary Cation-Anion Difference (DCAD) is a helpful tool to prevent milk fever.

The elements used to calculate DCAD are Sodium (+), Potassium (+), Chlorine (-), and Sulfur (-).

Ionic salts are used in pre-fresh cow rations to help prepare cows for the sudden demand for blood calcium. Examples are:
- Ammonium chloride
- Calcium chloride
- Magnesium chloride
- Ammonium sulfate
- Calcium sulfate
- Magnesium sulfate

TOTAL MIXED RATION

Advantages of feeding a TMR include:
- Eliminate selective feeding
- Lower percent fiber needed in ration
- Consistent ration
- Easier to balance precisely
- High dry matter intake
- Fewer digestive upsets
- Free-choice mineral not needed
- Can feed a variety of by-products
- Higher milk production

GRAZING

The most common reason that farm owners adopt grazing is cost reduction. The main costs cited for reduction are feed and labor.

Advantages of intensive rotational grazing include:
- Low input costs
- Even manure distribution
- Improved weed control
- Low labor requirement
- Reduced soil erosion

Disadvantages of grazing include:
- Inconsistent quality
- Unable to balance ration properly
- Distance from parlor
- Inconsistent quantity
- Lower forage yield per acre

GROUPING

When grouping the milking herd, several factors may be considered including:
- Body condition
- Production level
- Stage of lactation
- Lactation number
- Reproductive status
- Health
**BODY CONDITION SCORING**

Body condition scoring, based on a five-point scale, can be used to evaluate nutrition and health. A score of 1 is given to a very thin cow; a score of 5 is given to a very fat cow.

Targets for body condition scores at different stages of lactation are:

- At calving: 3.0-3.25
- Early lactation: 2.5
- Mid lactation: 2.75
- Late lactation: 3.0
- At drying off: 3.0-3.25

**MISCELLANEOUS**

A mature dairy cow has 32 teeth, but has no upper front teeth.

Feed is the largest cost in milk production.

Molasses are often added to dairy cattle rations to improve taste (palatability) and reduce dustiness.

Raw soybeans will turn rancid if they are ground.

Peak milk production usually occurs 2-3 weeks before peak feed intake.

Milk urea nitrogen (MUN) shows how well nitrogen and fermentable carbohydrates are balanced in the ration.
Chapter 7: Lactation and Milking Management

ACRONYMS

BST .............................................. Bovine somatotropin
BTMC ........................................... Bulk tank milk culture
BTSCC ........................................... Bulk tank somatic cell count
CFM ............................................... Cubic feet per minute
CIP ................................................... Clean in place
CMT ................................................... California mastitis test
CNS .............................................. Coagulase-negative staphylococci
DMSCC ......................... Direct microscopic somatic cell count
IGF ............................................... Insulin-like growth factor
IMI .................................................. Intramammary infection
rBST ............................................ Recombinant bovine somatotropin
SCC ................................................ Somatic cell count
SCS ................................................... Somatic cell score
WMT ................................................ Wisconsin mastitis test

DEFINITIONS

Acute mastitis
Mastitis characterized by sudden onset, redness, swelling, hardness, pain, grossly abnormal milk, and reduced milk yield

Agitator
Stirs milk in the bulk tank to help with cooling and to provide a uniform product mixture for sampling

Air injector
Device that allows controlled, cyclic admission of air during cleaning and sanitizing to produce slug flow conditions

Alternating pulsation
When cyclic movement of the liners of two teat cups within a cluster alternates with the movement of the other two liners

Alveoli
Spherical clusters of secretory cells in the mammary gland that are arranged in grape-like structures

Backflushing
System for sanitizing teat cup liners between cow milkings

Bulk tank
Large storage tank for cooling and storing milk at a cold temperature until it is transported to a processing plant; usually made of stainless steel

Chronic mastitis
Mastitis that continues over a long period of time, with progressive development of scar tissue and simultaneous reduction in milk yield

Clean-in-place (CIP)
Capability to clean and disinfect the milk-contact components of a milking system by circulating appropriate solutions through them without disassembly

Clinical mastitis
Mastitis characterized by visible abnormalities in the udder or milk

Foremilk
First streams of milk stripped from the udder prior to milking

Forestripping
Process by which the first few streams of milk are removed from the teat prior to milking to observe for abnormalities and to flush the teat canal

Inflammation
Condition in which the cow’s body seeks to eliminate or neutralize invading microorganisms and repair damaged tissue.

Intramammary infection
Infection characterized by the presence of microorganisms growing in the udder

Involution
Process by which udder tissue goes back to a non-milk-producing state after drying off
Keratin  
Waxy substance produced by cells lining the teat canal that serves as a plug between milkings and aids in reducing penetration by microorganisms

Lactation  
Period of time when a cow is in milk

Liner slip  
Condition whereby a teat cup slides down the surface of the teat, often accompanied by a squawk

Looped milkline  
Milkline that forms an enclosed circuit with two full-bore connections to the receiver

Lowline (or low-level) milking system  
System in which the milk inlet to the milkline or receiver jar is below the animal standing level

Mastitis  
An inflammation of the udder, most commonly caused by infecting microorganisms

Milk letdown  
Process through which milk is squeezed out of milk-producing tissue by the action of the hormone, oxytocin

Milk meter  
Device between the cluster and the milkline for measuring all the milk from an individual animal

Milk stone  
Milk-mineral deposit on milk handling equipment

Milkline  
Line that carries milk and air during milking and has the dual function of providing milking vacuum and conveying milk to a receiver

Myoepithelium  
Contractile tissue that forces milk out of the alveoli upon action of oxytocin

Pulsation  
The cyclic opening and closing of a teat cup liner

Pulsation rate  
The number of times per minute that the pulsator opens and closes

Pulsation ratio  
The amount of time a pulsator creates vacuum to open the liner compared with the amount of time it admits air to collapse the liner

Pulsator  
The part of the milking system that causes the alternate vacuum pressure between the teat cup shell and liner

Residual milk  
Milk remaining in the mammary gland following completion of milking

Ropy milk  
Milk that contains strings of white blood cells

Sanitary trap  
Vessel between the milk system and the air system to limit movement of liquids and other contaminants between the two systems

Sanitizer  
Chemical solution used to kill bacteria on product contact surfaces

Somatic cell count (SCC)  
Measurement most commonly used as an indicator of mastitis; an indicator of the extent of subclinical mastitis present in a cow’s udder or number of leukocytes present

Spontaneous recovery  
Ability of a cow to cure itself of an udder infection without the aid of antibiotics or other drugs

Stray voltage  
Small electric currents that flow through the electrical grounded-neutral system and that pass through a cow’s body, adversely affecting her behavior and performance

Strutting  
Condition in which the teats point out too much

Subclinical mastitis  
Mastitis with no detectable change in the udder itself and no observable abnormality of the milk

Supernumerary teats  
Extra teats
Vacuum gauge
An instrument to indicate the level of vacuum in the system, relative to atmospheric pressure

Vacuum pump
An air pump that produces vacuum in the milking system

Vacuum regulator (Vacuum controller)
The part of the milking system that prevents the vacuum level from exceeding a prescribed level

Washline
Line that carries cleaning and sanitizing solutions during the cleaning process from the wash sink, vat or tank to the milking units, milkline or milking vacuum line

HORMONES
Adrenaline (epinephrine) can interfere with milk ejection when a cow becomes frightened or upset.

Oxytocin is the hormone that causes milk letdown. It is produced by the hypothalamus, but secreted from the posterior pituitary. Maximum oxytocin concentration in blood occurs one minute after beginning stimulation.

Prolactin is the pituitary hormone that is critical in the initiation and maintenance of lactation.

Estrogen and progesterone are ovarian hormones that are involved in the development of the mammary gland.

MILK PRODUCTION
The parts of the teat through which milk passes are the teat cistern, sphincter muscle, and streak canal (teat canal).

Cows milked three times a day will normally produce 8 to 15 percent more milk than cows milked twice a day.

Cows calving in November, December, and January have the highest 305-day milk production.

MILKING FACILITIES
Types of milking parlors include herringbone, parallel, parabone, rotary, and side opening.

The herringbone parlor is the most common type in use today.

Automatic milking systems milk cows without human labor. Other names for automatic milking systems are voluntary milking systems and robotic milking.

MILKING EQUIPMENT
Parts of a milking unit include the claw, teat cup shell, teat cup liner (inflation), milk tube, and short air tube.

Teat cup liners (inflations) should generally be replaced every 1,000 – 1,200 cow milkings.

Specifically, the teat cup liner (inflation) is the only part of the milking system that touches the cow.

Signs of a malfunctioning milking system include:
- Excessive vacuum fluctuation
- Slow milking
- Teat cups fall off
- Flooded milk lines
- Squawking teat cups
- Uneven milk flow

A liner slip may be caused by:
- Improper liner design
- Vacuum fluctuations
- Cluster weight
- Milking wet teats

Vacuum pressure at the teat end at the time of milking should be 12 to 13 inches of mercury.

CLEANING EQUIPMENT
A standard milking equipment cleaning protocol consists of four phases:
- Pre-rinse
- Chlorinated alkaline cleaning
- Acid rinse
- Sanitization

The key factors for adequate, effective cleaning of milking systems are contact time, water temperature, and chemical concentration.

Recommended temperature of water for washing the bulk tank, lines, and other equipment is 160°F.

Dirty equipment is most frequently the cause of high bacteria counts in milk.
MILKING PROCEDURES

The recommended milking procedures are:
1. Provide a clean, low stress environment for cows.
2. Check foremilk and udder for mastitis.
3. Pre-dip teats in an effective product and provide a 20 to 30-second contact time.
4. Dry teats completely with an individual towel.
5. Attach milking unit within 1 minute after the start of stimulation.
6. Adjust units as necessary for proper alignment.
7. Shut off vacuum before removing unit.
8. Dip teats immediately after unit removal with an effective product.

Consequences of long pre-milking stimulation include:
- Lower production
- Higher somatic cell count (mastitis problems)
- Slower milking time

TEAT DIPS

When using a teat dip as a pre-dip, the dip should be left on the teat for at least 20 to 30 seconds before it is wiped off.

The main reason for teat dipping after each milking (post-dipping) is to reduce the rate of new infection in the udder.

Solutions commonly used as teat dips include:
- Bronopol
- Chlorine
- Hydrogen peroxide
- Quaternary ammonia
- Chlorhexidine
- DDBSA
- Iodine

CLOTH TOWELS

When using cloth towels in udder preparation, the following guidelines are recommended:
- Use a separate towel for each cow.
- Wash cloth towels using warm water.
- Do not let damp towels sit between uses because of yeast or mold contamination.
- Dry towels immediately after washing or add bleach when washing.

MASTITIS

The major factors involved in bovine mastitis are the cow, microorganisms, and environment.

Mastitis is the most costly disease in dairy cattle.

Economic losses due to mastitis are estimated to be about $200 per cow per year.

Mastitis-related costs include:
- Reduced milk production (64%)
- Drugs (5%)
- Discarded milk (14%)
- Veterinarian (3%)
- Early cow replacement cost (8%)
- Labor (1%)
- Reduced cow sale value (5%)
- Lost milk premiums (variable)

The main types of mastitis are subclinical mastitis, clinical mastitis, acute mastitis, and chronic mastitis.

Symptoms of clinical mastitis include:
- Flakes
- Stringy milk
- Hot quarter
- Presence of blood
- Clots
- Watery milk
- Swollen quarter

The California Mastitis Test, conductivity, and strip cup are on-farm screening tests to detect mastitis.

Potential causes of mastitis include:
- Failure to teat dip
- Poor housing/environment
- Poor sanitation
- Faulty milking equipment
- Poor milking practices
- Stray voltage
- Improper dry cow management

The most effective measures to prevent new mastitis infections are teat dipping and dry cow antibiotic treatment.

The streak canal (teat canal) is the cow’s first line of defense against mastitis infections; leukocytes are the second natural line of defense.
Steps in a good mastitis control program are:
- Use functionally adequate milking equipment in the correct manner.
- Dip teats after milking with an effective product.
- Treat clinical cases immediately with recommended dosages.
- Treat every quarter of every cow at dry off with an effective dry cow product.
- Cull chronic cows.

**SOMATIC CELLS**

High numbers of somatic cells in milk are generally an indicator of infection (mastitis).

Somatic cells include two types of cells:
- White blood cells (leukocytes) that move into the udder during inflammation
- Epithelial cells from milk producing tissues

Normal milk generally has a SCC less than 200,000 cells/milliliter.

The legal limit for somatic cell counts in raw milk in the United States is 750,000 cells/ml. The limit in the European Community is 400,000 cells/ml.

U.S. milk and milk products exported to European Union member countries must have a rolling average somatic cell count less than 400,000 cells/ml.

**MASTITIS-CAUSING PATHOGENS**

Culturing milk samples (on-farm or in a lab) can provide information for mastitis prevention, treatment and control by identifying the mastitis-causing pathogen.

Contagious mastitis-causing pathogens are those growing in the udder that are spread from cow to cow. Examples include:
- Staphylococcus aureus (Staph. aureus)
- Mycoplasma species
- Streptococcus agalactiae (Strep. ag.)

Environmental mastitis-causing pathogens grow in the cow's environment and contact the udder and teats causing infection. They include bacteria classified as coliforms or environmental Streptococci.

- Coliforms include:
  - Escherichia coli (E. coli)
  - Enterobacter species
  - Klebsiella species

- Environmental Streptococci include:
  - Streptococcus dysgalactiae
  - Streptococcus uberis

Sources of environmental bacteria in dairy herds are:
- Soil
- Bedding
- Mud
- Water
- Feedstuffs
- Feces

Factors affecting the dairy cow's environment are:
- Climate
- Herd size
- Frequency and duration of confinement housing
- Season of year
- Housing type
- Management of cows and facilities

Many other pathogens may cause mastitis including other bacteria, fungi, and yeast.
MILK QUALITY AND COMPOSITION

The legal limit for bacteria counts in raw milk in the U.S. is 100,000 cfu/ml.

Sources of on-farm milk contamination include:
- Air (dust)
- Dirt (outside of the cow)
- Feed
- Interior of udder
- Antibiotics
- Equipment
- Insects
- Water

Factors that can influence milk composition include:
- Age of cow
- Breed
- Environmental temperature
- Estrus
- Genetics
- Milking procedures
- Nutrition
- Season
- Somatic cell count
- Stage of lactation

Conditions that will cause a decrease in fat test include:
- Finely chopped feeds
- Extremely hot weather
- Estrus
- Low fiber content in ration
- Illness

Mastitis has an effect on milk composition.

Components that decrease in concentration in mastitic milk are:
- Calcium
- Casein
- Fat
- Lactose
- Phosphorus
- Potassium
- Solids not fat
- Total proteins
- Total solids

Components that increase in concentration in mastitic milk are:
- Chloride
- Immunoglobulins
- Leukocytes
- Lipase
- Sodium
- Trace Minerals

DRY PERIOD

The traditionally recommended length of the dry period for dairy cows is 45 to 60 days.

The most effective time to treat mastitis infections is at drying off.

The purposes of dry cow antibiotic treatment are to remove existing infections and prevent new infections.

Reasons to treat every quarter of every cow at drying off are:
- Higher concentration of antibiotics than lactating products
- Antibiotics remain longer
- No discarding of salable milk
- Prevent new infections
Chapter 8: Dairy Products and Milk Marketing

ACRONYMS

ADV ................................................................. Acid degree value
CFU ................................................................. Colony forming units
CLA ................................................................. Conjugated linoleic acid
COOL ............................................................... Country of Origin Labeling
CWT ................................................................. Cooperatives Working Together
DIPP ............................................................... Dairy Indemnity Payment Program
GATT ......... General Agreement on Tariffs and Trade
HACCP .......... Hazard Analysis and Critical Control Points
HTST .............................................................. High temperature, short time
MPP-Dairy .... Margin Protection Program for Dairy
NAFTA .......... North American Free Trade Agreement
NFDM ............................................................. Non fat dry milk
NOP ................................................................. National Organic Program
PI ................................................................. Preliminary incubation
PMO .............................................................. Pasteurized Milk Ordinance
RDA ............................................................... Recommended Daily Allowance
SNF ............................................................... Solids not fat
SPC ............................................................... Standard plate count
TS ................................................................. Total solids
UF ................................................................. Ultrafiltration
UHT ............................................................... Ultra high temperature

DEFINITIONS

Acid degree value
   Test that detects rancidity in milk

Casein
   The primary protein found in milk

Churning
   Process that turns cream into butter

Clarification
   Process that removes solid impurities from milk prior to pasteurization

Cream
   High fat milk product separated from milk

Cryoscope
   Instrument used to test the freezing point of milk to determine if water has been added

Cultured dairy products
   Dairy foods that have been fermented with lactic acid bacteria

Fluid milk
   Packaged dairy products used as beverage milks

Fluid products
   Term traditionally used to define products including beverage milks, fluid cream items, and yogurts

Fluid utilization
   Proportion of Grade A milk in a market used to produce fluid (Class I) milk

Fortification
   Process by which vitamins are added to milk

Hazard Analysis and Critical Control Points
   System of quality control that identifies where mistakes often occur

Lactase
   Enzyme needed by humans to digest lactose

Lactose
   Milk sugar that gives milk its sweet flavor

Lactose intolerance
   Condition when a person cannot break down milk sugar

Lipase
   Enzyme that breaks down butterfat, leading to rancidity

Mailbox milk price
   Price for milk of average composition and is a weighted average for the market; accounts for all payments received for milk including performance bonuses and premiums; also accounts for all deductions such as promotion, hauling, capital retains, and cooperative dues
Manufacturers
Producers of cheese, butter, nonfat dry milk, and other storable dairy products

Manufacturing milk
Grade B milk or the Grade A milk used in the production of manufactured dairy products

Milk class
Describes how milk is used by the processor or in a marketing area

Pasteurization
Process that destroys any disease-producing bacteria that might be present in raw milk

Phosphatase test
Test used to determine if raw milk has mixed with pasteurized milk

Processors
Firms that process raw Grade A milk into fluid products.

Raw milk
Milk as it comes from the cow prior to processing

Rennet
Substance containing many enzymes that is obtained from the lining of a calf’s stomach

Rennin
Enzyme found in rennet that is used to coagulate protein (casein) when making cheese

Separation
Process of dividing milk into skim milk and cream

Standard place count
Test that measures bacterial content of raw milk to monitor milk quality

Standardization
Process that assures that milk and dairy products will be uniform in protein and fat content

Whey
Fluid by-product of cheese making.

MILK
Milk is nature’s most nearly perfect food.
Milk is 96-98% digestible.

Animals other than the cow are also used to produce milk for human consumption throughout the world. These animals include the goat, sheep, camel, water buffalo, reindeer, horse, and yak.

Cow’s milk consists of 87.4% water and 12.6% milk solids.

Milk solids can be divided into solids-not-fat (8.9%) and fat (3.7%).

Components of the solids-not-fat part of milk are protein (3.4%), lactose (4.8%), and minerals (0.7%).

The minimum total solids-not-fat content in the legal definition of milk is 8.25%.

PROTEIN
Milk contains casein and whey proteins.
Milk taste improves as the protein level in milk increases.

LACTOSE
Lactose is the major solids component of milk.
The simple sugars that make up lactose are glucose and galactose.

VITAMINS AND MINERALS
Vitamin D is added to milk at processing time to prevent rickets. It is essential for efficient use of calcium and phosphorus in bone growth.

Reduced fat (2% fat), lowfat (1% fat), and skim milk must be fortified with Vitamin A to be nutritionally similar to whole milk.
The minerals found in milk that are important in bone growth are calcium and phosphorus.
CONJUGATED LINOLEIC ACID

Conjugated linoleic acid (CLA) is an 18-carbon fatty acid present in milk, particularly from cows grazing pasture, which has been found to have cancer prevention effects.
CLA content is greater in higher fat products.

MILK QUALITY

The expiration date on a milk carton is a customer’s assurance of a fresh dairy product.
The “Real Seal” assures the customer that the product they are purchasing is a genuine dairy product.
Advantages of high quality milk from a processor’s point of view include:
   - Improved flavor
   - Long shelf life
   - Increased cheese yield
   - Reduced hauling and handling costs due to low quality milk not having to be diverted to an alternative use
Advantages of high quality milk from a dairy producer’s point of view include:
   - Greater profitability
   - Increased milk yield
   - Low culling rates
   - Low treatment costs
   - Reduced labor and labor cost
   - Larger milk checks due to improved milk per cow and premiums

ON-FARM MILK STORAGE

A bulk tank should be washed and sanitized every time it is emptied.
Grade A raw milk must be cooled to 45°F or less within two hours after milking.
After the first milking, the temperature of milk in a bulk tank should not reach higher than 50°F at any time.
Milk temperature should be kept under 40°F to maintain the best quality.

MILK QUALITY TESTS

Raw milk quality tests used by milk plants include:
   - Acid degree value
   - Antibiotic test
   - Flavor
   - Freezing point
   - Leukocyte (somatic cell) count
   - Preliminary incubation (PI) count
   - Sediment test
   - Standard plate count

OFF-FLAVORS

Common off-flavors in milk are:
   - Acid
   - Bitter
   - Cooked
   - Feed
   - Fermented
   - Foreign
   - Fruity
   - Lacks freshness
   - Oxidized
   - Rancid
   - Salty
   - Sour
Off-flavors in milk are most commonly found in the butterfat component.
An oxidized flavor can result from exposing milk to:
   - Sunlight or fluorescent lighting (Light-oxidized)
   - Copper bearing surfaces (Metal-oxidized)
Pigmented milk cartons are used to prevent an oxidized flavor.
A sour flavor occurs when there are large numbers of bacteria present in milk.
**ANTIBIOTIC RESIDUES**

Antibiotic residues are not allowed in milk for human consumption. Reasons for this regulation include:
- Some people are allergic to antibiotics. (Main reason)
- Milk that contains antibiotic residues is not good for cheese making.
- Bacteria may become resistant to antibiotics.
- Antibiotics are not a natural part of milk.

**PASTEURIZATION**

Pasteurization increases the shelf life of milk by substantially reducing the total bacteria population.

Pasteurization destroys lipase and other natural milk enzymes, which might cause off-flavor in milk during refrigerated storage.

The batch or holding method of pasteurization heats milk to 145°F for not less than 30 minutes.

The high temperature, short time method of pasteurization heats milks to 161°F for 15 seconds.

**BEVERAGE MILKS**

Milk is labeled according to the following standards:

<table>
<thead>
<tr>
<th>Label</th>
<th>Other Names</th>
<th>Grams of fat per cup</th>
<th>Calories per cup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fat free</td>
<td>Nonfat, skim</td>
<td>0</td>
<td>80</td>
</tr>
<tr>
<td>Lowfat</td>
<td>1% fat</td>
<td>2.5</td>
<td>100</td>
</tr>
<tr>
<td>Reduced fat</td>
<td>2% fat</td>
<td>5</td>
<td>120</td>
</tr>
<tr>
<td>Whole</td>
<td></td>
<td>8</td>
<td>150</td>
</tr>
</tbody>
</table>

Titanium dioxide is often added to fat free milk to whiten the milk.

**BUTTER**

It takes 21.2 pounds of whole milk to make a pound of butter.

Butter must contain a minimum of 80% fat.

U.S. Grade AA is the highest grade of butter sold in the U.S.

One stick of butter = 1/2 cup = 1/4 pound = 8 tablespoons

**CHEESE**

It takes 10 pounds of whole milk to make a pound of cheese.

The protein content of milk most affects the amount of cheese one can get from a unit of milk.

The major components of dried whey are lactose, minerals, and protein.

Cheese is classified according to its consistency. The classes are soft, semi-soft, hard, and very hard.

Mozzarella cheese is the most popular variety of cheese in the United States. Cheddar is second most popular.

Feta and Roquefort are cheeses made from the milk of animals other than the dairy cow.

**CREAM**

Cream must contain at least 18% milk fat.

Cream varieties include:
- Acidified sour cream
- Acidified sour half & half
- Cream in aerosol cans
- Half & half
- Heavy cream
- Light cream
- Light whipping cream
- Reduced-fat sour cream
- Sour cream
- Sour half & half
**FROZEN DAIRY PRODUCTS**

Frozen dairy products include ice cream, frozen custard, sherbet, and frozen yogurt.

It takes 12 pounds of whole milk to make a gallon of ice cream.

Federal standards require ice cream to contain a minimum of 10% milk fat and 20% total milk solids by weight.

Some premium ice creams contain 16% milk fat.

**CULTURED DAIRY PRODUCTS**

Cultured dairy product examples include:
- Acidophilus milk
- Buttermilk
- Crème fraîche
- Kefir
- Sour cream
- Yogurt

Yogurt is a mixture of milk (whole, reduced-fat, lowfat, or nonfat) and cream fermented by a culture of lactic acid-producing bacteria. Yogurt contains at least 3.25% milk fat and 8.25% solids-not-fat.

Authentic Greek yogurt is made by straining yogurt using muslin or cheesecloth to remove whey from the yogurt to make it creamy and thick. It takes four pounds of milk to make one pound of authentic Greek yogurt.

**FEDERAL MILK MARKETING ORDERS**

The Agricultural Marketing Agreement Act of 1937 provided for Federal Milk Marketing Orders.

The Secretary of Agriculture regulates Federal Milk Marketing Orders.

The federal orders specify minimum prices and conditions under which regulated milk handlers must operate when selling fluid milk products within a specified geographic area.

There are ten Federal Milk Marketing Orders in the United States. Component pricing is used in six of the orders.

The current Federal Milk Marketing Orders are:
- Appalachian
- Arizona
- Central
- Florida
- Mideast
- Northeast
- Pacific Northwest
- Southeast
- Southwest
- Upper Midwest

**MILK CLASSES**

Federal Milk Marketing Orders have four milk classes based on how milk is used by the processor or in a marketing area.

Class I
- Beverage milks

Class II
- Fluid cream products, yogurt, and manufactured products (ice cream, cottage cheese)

Class III
- Cream cheese and hard manufactured cheese

Class IV
- Butter and milk in dried form

**MILK GRADRES**

Fluid grade (Grade A) milk is milk produced under sanitary conditions that qualify it for fluid consumption. Only Grade A milk is regulated under Federal Milk Marketing Orders.

The Pasteurized Milk Ordinance (PMO) is the document that establishes the standards for Grade A milk.

Manufacturing grade (Grade B) milk is milk not meeting the fluid grade standards. Less strict standards generally apply.
MILK COOPERATIVES

The top five milk producing cooperatives in the U.S. based on member milk volume in 2016 were:
1. Dairy Farmers of America
2. California Dairies, Inc.
3. Land O’Lakes, Inc.
4. FarmFirst Dairy Cooperative
5. Dairy Business Milk Marketing Cooperative

The top 50 cooperatives accounted for 80 percent of the milk produced in the U.S. in 2016.

COOPERATIVES WORKING TOGETHER

Cooperatives Working Together (CWT) is a dairy farmer-funded self-help program to address supply and demand imbalances that can depress milk prices. The CWT program focuses on providing export assistance. CWT is operated within the structure of the National Milk Producers Federation.

CWT’s funding comes from farmers who invest 4 cents per hundredweight of milk sold.

ORGANIC DAIRY PRODUCTION

Organic dairy production is a method of production that uses:
- No hormones to promote growth
- No mammalian or poultry by-products in feed
- No antibiotics
- 100% organic feed

California ranks first among the states for the number of organic dairy cows.

USDA’s National Organic Program (NOP) regulates the standards for any farm, wild crop harvesting, or handling operation that wants to sell an agricultural product as organically produced.

NOP standards for organic livestock production require access to pasture throughout the grazing season and a diet consisting of at least 30% dry matter intake from pasture grazed during the grazing season, totaling at least 120 days.

DAIRY PROMOTION

Fifteen cents per hundredweight of milk sold are deducted from every dairy producer’s milk check to pay for promotion and research through the dairy checkoff.

Started in 1937, June Dairy Month was originally called National Milk Month. The American Dairy Association is the national leader for June Dairy Month.

National Grilled Cheese Month is observed in April.
National Ice Cream Month is observed in July.

The dairy case is usually placed at the rear of the store because it causes shoppers to walk past many other products in order to get to the dairy case, which increases impulse buying.

The “Got Milk?” campaign was first used by California milk processors in 1993. It was retired by MilkPEP in 2014 and was replaced by the “Milk Life” tagline.

DAIRY PRODUCT CONSUMPTION

As a person’s age increases, his/her milk consumption tends to decrease.

McDonald’s is the fast food chain that uses the most milk in the U.S.

Milk is the victory drink at the Indianapolis 500 each year.

DIETARY GUIDELINES

According to the 2015 Dietary Guidelines for Americans, the following amounts of dairy are recommended in the Healthy U.S.-Style Pattern:

- For children ages 2 to 3 years: 2 cup-equivalents per day
- For children ages 4 to 8 years: 2 ½ cup-equivalents per day
- For adolescents ages 9 to 18 years and adults: 3 cup-equivalents per day

MyPlate is an illustration of the five food groups in a place setting based on the 2010 Dietary Guidelines for Americans; it is designed to help consumers make healthier food choices.
Chapter 9: Miscellaneous

ACRONYMS
CTAP ..................Current Test Day Analysis Program
DCR ..................Data collection rating
DIM ..................Days in milk
ECM ..................Energy corrected milk
ERPA .................Estimated relative producing ability
FCM ..................Fat corrected milk
ME ..................Mature equivalent
PCDART ..............Personal Computer Direct Access
to Records by Telephone
RIP ..................Record in progress
SMV ..................Slow moving vehicle
TQM ..................Total quality management

WEIGHTS AND MEASURES

<table>
<thead>
<tr>
<th>Item</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A gallon of milk</td>
<td>8.6 pounds</td>
</tr>
<tr>
<td>A quart of milk</td>
<td>2.15 pounds</td>
</tr>
<tr>
<td>A bushel of corn</td>
<td>56 pounds</td>
</tr>
<tr>
<td>A bushel of wheat</td>
<td>60 pounds</td>
</tr>
<tr>
<td>A bushel of barley</td>
<td>48 pounds</td>
</tr>
<tr>
<td>A bushel of oats</td>
<td>32 pounds</td>
</tr>
<tr>
<td>A bushel of soybeans</td>
<td>60 pounds</td>
</tr>
<tr>
<td>A hundredweight (cwt)</td>
<td>100 pounds</td>
</tr>
<tr>
<td>A kilogram</td>
<td>2.2 pounds</td>
</tr>
</tbody>
</table>

U.S. DAIRY INDUSTRY AT A GLANCE IN 2017

Number of licensed dairy farms ......................41,809
Number of dairy cows* ................................9.3 million
Milk per cow per year ...............................22,774 pounds
Milk production .....................................212.4 billion pounds

*The number of dairy cows reached its peak in 1945.

2017 DAIRY PRODUCTION RANKINGS

Total milk production
1. California
2. Wisconsin
3. New York
4. Idaho
5. Texas

Number of dairy cows
1. California
2. Wisconsin
3. New York
4. Idaho
5. Pennsylvania

Milk per cow
1. Michigan
2. Colorado
3. New Mexico
4. Arizona
5. Idaho

Cows per herd
1. New Mexico
2. Arizona
3. Nevada
4. Colorado
5. California

2017 FORAGE PRODUCTION RANKINGS

Corn silage production
1. Wisconsin
2. California
3. Pennsylvania
4. New York
5. Minnesota

Alfalfa production
1. Wisconsin
2. California
3. Idaho
4. Minnesota
5. Montana
**DHIA**

The standard length of a DHIA record is 305 days. 

The meaning of “305-2X-ME” on dairy records is that the lactation record was adjusted to a 305-day lactation, twice a day milking, mature equivalent.

If one sees “3X” in a dairy animal’s production records, it means the cow was milked three times a day.

A DHIA record may be terminated if a cow has dried off, aborted or died.

A lactation record is generally adjusted for lactation length, mature equivalent, and 2 times a day milking.

Lactation records in progress can be used in calculation of USDA-AIPL Sire Summaries if they have at least one test and are a minimum of 40 days in length.

A Data Collection Rating (DCR) is an indicator of the amount of information included in a production record and the resulting accuracy level when compared to production records with either less or more information.

National DHIA and Quality Certification Services offer 20 DHI test plans to participating producers.

Laboratory tests available through DHI include:
- Butterfat percentage
- Solids-not-fat percentage (SNF)
- Somatic cell count (SCC)
- Protein percentage
- Milk urea nitrogen (MUN)
- Johne’s disease

**CULLING**

Reasons for culling a dairy cow from the herd include:
- Low production
- Reproduction
- Feet and legs
- Injury
- Mastitis
- Udder
- Disease
- Disposition

Dairy cattle can be sold privately on farm or in auction sales. Types of auction sales are consignment, dispersal, and reduction.

**FARM BUSINESS MANAGEMENT**

The necessary economic inputs for a dairy operation are land, labor, capital, and management.

A cooperative is a firm that is owned by its farmer members, is operated for their benefit, and distributes earnings on the basis of patronage.

**PRECISION DAIRY FARMING**

Precision dairy farming is the use of technologies to measure physiological, behavioral, and production indicators on individual animals to improve management strategies and farm performance.

Examples of precision dairy farming include:
- Daily milk yield monitoring
- Automatic temperature recording devices
- Milk component monitoring
- Milk conductivity indicators
- Pedometers
- Automatic estrous detection monitors
- Accelerometers
- Daily body weight measurements

Benefits of precision dairy farming include:
- Improved animal health and well-being
- Minimized adverse environmental impacts
- Increased efficiency
- Risk analysis and management
- Reduced costs
- More objective (less observer bias and influence)
- Improved product quality

**FARM BILL**

Every five years, the U.S. Congress passes a bundle of legislation called the Farm Bill; it sets national policy for agriculture, nutrition, conservation, and forestry.

The Agricultural Act of 2014 is the name of the 2014 Farm Bill.
LABOR MANAGEMENT

The minimum wage in the U.S. is $7.25 per hour, effective July 24, 2009.

Selection tools that a dairy manager can use when hiring a new employee include:
- Application forms
- Reference checks
- Trial periods
- Interviews
- Work tests

The Worker Protection Standard is an Environmental Protection Agency (EPA) program designed to protect the nation’s agricultural workers from pesticides.

PHOTOPERIOD

Long-day photoperiod, providing 16 to 18 hours of light per day, may stimulate lactating cows to produce 5 pounds more milk per day on average.

Melatonin is the hormone released by the pineal gland in response to longer day length.

Short-day photoperiod exposes cows to 8 hours of light followed by 16 hours of darkness. Dry cows exposed to a short-day photoperiod produce more milk in the next lactation than similar cows exposed to long day photoperiod or natural light conditions.

ANIMAL WELL-BEING

According to the American Veterinary Medical Association, animal welfare is the ethical responsibility of ensuring animal well-being.

Animal well-being is the condition in which animals experience good health, are able to effectively cope with their environment, and are able to express a diversity of species-typical behaviors.

The National Dairy Animal Well-Being Initiative is a producer-led effort to build consumer trust and confidence in the dairy industry’s commitment to animal well-being.

An animal rights activist is a person who believes that an animal’s life has the same value as a human’s life and has the goal of eliminating all systems that involve the use of animals by humans.

FREESTALLS

The main reason that dairy cows refuse to use freestalls is improper size.

The parts of a freestall include:
- Support post
- Neck rail
- Stall surface (bedding, mattress)
- Stall partition
- Brisket board (tube)
- Rear curb
Chapter 10: Reproduction

ACRONYMS

AI ................................................. Artificial insemination
CIDR ........................................... Controlled internal drug release
CL ................................................ Corpus luteum
CR ................................................ Conception rate
ET .................................................. Embryo transfer
FSH .............................................. Follicle stimulating hormone
GnRH .......................................... Gonadotropin releasing hormone
IVF ............................................... In vitro fertilization
LH ................................................ Luteinizing hormone
MOET ................................. Multiple ovulation and embryo transfer
PGF2α ........................................ Prostaglandin F2α
PR .................................................. Pregnancy rate
SCR .............................................. Sire conception rate
TAI .............................................. Timed artificial insemination

DEFINITIONS

Abortion
Premature expulsion of a fetus

Anestrus
Failure to have an estrous cycle

Artificial insemination (AI)
Process of freezing semen from a bull and thawing it later to fertilize ova

Calving interval
Period of time from one calving to the next calving, usually measured in months

Conception rate
Percent of services (breedings) that result in a pregnancy

Corpus luteum
Temporary gland that forms on the ovary after the ovum is released; also called yellow body

Cryptorchidism
Condition when one or both testes fail to descend from the abdomen into the scrotum, often affecting fertility

Days open
Days from calving until conception or successful breeding date

Days to first service
Days from calving until first breeding date

Embryo transfer
Process of removing a fertilized ovum from a donor cow and transferring it to another cow or heifer;
Most embryo transfers are conducted on day 7 or 8 after breeding

Endometritis
Inflammation of the uterine lining

Estrus
Period of heat in dairy cattle

Fertilization
Process of joining an ovum and a sperm. It takes place in the oviduct

Freemartins
Sterile heifer born twin to a bull

French straw
Thin cylinder in which frozen semen is preserved

Gestation
Period of pregnancy; it begins at fertilization and ends at birth

Infertility
Describes the animal that is neither normally fertile nor totally sterile

Involution
Process where the uterus returns to normal size after calving

Metritis
Infection of the uterus
Ovulation
Process of releasing an ovum from the follicle on the ovary

Parturition
Act of giving birth (also called calving, freshening)

Pregnancy rate
Percent of cows that become pregnant out of those cows eligible to become pregnant in a given period of time, usually 21 days

Recipient
An animal that received a fertilized ovum from a donor.

Retained placenta
Condition when the fetal membranes remain attached to the maternal caruncles within the uterus for an extended period of time after calving (greater than 24 hours).

Sire Conception Rate (SCR)
An evaluation of artificial insemination (AI) service-sire fertility computed by the Council on Dairy Cattle Breeding; calculated for Ayrshire, Brown Swiss, Guernsey, Holstein, Jersey, and Milking Shorthorn bulls

Sterility
Describes the animal that cannot reproduce

Superovulation
Process that involves treating a cow with a hormone (FSH) to increase the number of ova produced.

Superovulation
Process that involves treating a cow with a hormone (FSH) to increase the number of ova produced

Transvaginal aspiration
Use of ultrasonography to view the ovary while removing oocytes through the vagina using a needle; harvested oocytes are matured and fertilized in vitro

Voluntary Waiting Period (VWP)
Time period after calving when the dairy producer chooses not to breed a cow; most common VWP is 60 days

Zygote
A fertilized ovum

---

**COW’S REPRODUCTIVE TRACT**

The parts of the cow's reproductive tract are:
- Vulva
- Vagina
- Cervix
- Uterus
- Oviduct
- Ovary

The broad ligament is the structure that holds the uterus and ovaries in their proper position.

The main functions of the ovary are production of ova and secretion of hormones essential for reproduction.

One hundred percent (100%) of the ova in a mature cow's ovaries were present at birth.

The fertile life of an ovum after its release from the follicle is 6 to 12 hours.

The site of semen deposition in natural service (bull) is in the vagina next to the cervix; in artificial insemination it is normally in the body of the uterus.

The fetus develops in the uterus after the ovum is fertilized.

The placenta is the structure through which the fetus receives all of its nutrients. The placenta is attached to the uterus in dairy cattle by maternal caruncles and fetal cotyledons (placentones).
FEMALE REPRODUCTIVE HORMONES

Gonadotropin Releasing Hormone (GnRH)
- Secreted by the hypothalamus;
- Controls the secretion of pituitary hormones (FSH and LH)

Follicle Stimulating Hormone (FSH)
- Secreted by the anterior pituitary gland;
- Stimulates growth of follicles

Luteinizing Hormone (LH)
- Secreted by the anterior pituitary gland
- Causes the follicle to rupture and then causes the corpus luteum to replace the follicle;
- Increases dramatically in concentration 24 hours prior to ovulation soon after the onset of estrus

Estrogen (E2)
- Produced by the follicle;
- Necessary for behavioral estrus and peaks at the onset of standing estrus

Progesterone (P4)
- Produced by the corpus luteum;
- Necessary for the maintenance of pregnancy;
- Inhibits the release of GnRH from the hypothalamus

Prostaglandin (PGF)
- Produced by the uterus (endometrium);
- Causes destruction or regression of the corpus luteum

ESTROUS CYCLE

The normal range in length of the estrous cycle is 18 to 24 days.

On average, there are 21 days between heat periods in dairy cows.

The phases of the estrous cycle are:
- Follicular (active follicles are present)
- Luteal (corpus luteum is the dominant ovarian structure)

The stages of the estrous cycle are:
1. Estrus: heat period
2. Metestrus: transition
3. Diestrus: corpus luteum present
4. Proestrus: prior to estrus

Follicles develop in a wave-like pattern known as the follicular wave. There are five phases of a follicular wave:
- Recruitment
- Selection
- Growth
- Dominance
- Regression

There are normally 2 or 3 follicular waves during an estrous cycle in cattle.

ESTRUS

Duration of standing heat is usually 2 to 12 hours with an average of 7 hours.

Pregnancy is the most common cause of a cow not coming back into heat. It is estimated that 3 to 5% of pregnant cows exhibit estrus.

Milk progesterone levels are low during estrus.

A silent heat is the condition where the physical signs of heat are difficult to detect.

Signs of estrus in dairy cattle include:
- Restlessness
- Bellowing
- Following and smelling another cow
- Mounting other cow
- Standing to be mounted
- Clear mucus discharge from vulva
- Vulva becomes red and swollen

Standing to be mounted is the most reliable sign of estrus.

Estrus synchronization programs include:
- CIDR
- Ovsynch
- Pre-Synch
- Co-Synch
- Heat-synch
Heat detection aids used on dairy farms include:
- Heat expectancy charts
- Tail chalk
- Pedometers
- Accelerometers
- Pressure sensors
- Electronic heat detection systems
- Detector animals

**ARTIFICIAL INSEMINATION**

Advantages of using artificial insemination over natural service include:
- Safety
- Genetic improvement
- Better disease control
- Better record keeping
- Easier to prove bulls
- Less expensive than keeping a bull

A cow should be artificially inseminated 5 to 15 hours after the onset of standing heat.

Liquid nitrogen is used to freeze and store semen. The temperature of liquid nitrogen is 320°F.

Frozen semen should be thawed in a warm water bath (90 to 95°F) for a minimum of 40 seconds to maximize the number of motile sperm.

**CONCEPTION RATE**

Factors affecting a dairy herd’s conception rate include:
- Heat detection accuracy
- Herd (cow) fertility
- Semen (bull) fertility
- Technician competency

Reasons cows don’t become pregnant when the herd is bred by artificial insemination include:
- Failure to ovulate
- Fertilization failure
- Hormone imbalance
- Poor quality semen
- Failure to inseminate
- Improper insemination technique
- Heat detection errors

**PREGNANCY RATE**

Pregnancy rate is the combined effect of heat detection rate and conception rate.

Pregnancy rate is usually calculated every 21 days because that is the average length of the dairy cow’s estrous cycle.

Pregnancy rate can be calculated for AI bred herds, bull bred herds, or a combination of both.

**ULTRASOUND**

Ultrasound can be used in a reproductive management program in several ways including:
- Pregnancy determination
- Determine embryonic losses
- Determine if twins are being carried
- Monitor cystic ovaries
- Determine sex of embryo

**GESTATION**

Average gestation length varies from 276 to 292 days.

Gestation length can vary due to many factors including:
- Age of the cow
- Breed of the cow
- Sex of the calf
- Number of calves carried
- Season of the year

Brown Swiss cattle have the longest gestation period.

**PARTURITION**

Cortisol is the hormone the calf triggers in response to stress to initiate parturition.

Relaxin is the hormone released prior to calving that enables the cervix to soften and stretch in preparation for expelling the calf.

Signs that a cow is near calving include:
- Udder full
- Vulva enlarged
- Mucus discharge
- Restlessness
- Relaxation of ligaments at tail head

The normal birth position of a calf is front feet first with the head between the legs.
CALVING INTERVAL

A herd’s average calving interval is influenced by several factors including:
- Voluntary waiting period
- Estrus (heat) detection
- Conception rate
- Reproductive culling

MALE REPRODUCTIVE SYSTEM

The main functions of the testes are to produce sperm and produce the male sex hormones.

Mature sperm are stored in the epididymus.

Sperm live 24 to 30 hours after being deposited in the cow’s reproductive tract. It takes sperm 6 hours to become capacitated (i.e., to develop the ability to fertilize the ovum).

Sperm produce lactic acid during metabolism.

Fructose is the primary sugar found in semen.

The male reproductive hormones include:
- Follicle stimulating hormone (FSH)
  - Stimulates sperm production
- Luteinizing hormone (LH)
  - Stimulates sperm production
- Testosterone
  - Responsible for the male sex drive (libido)

REPRODUCTIVE HEALTH

Reproductive failure is the number one reason for culling in U.S. dairy herds.

It usually takes 30 to 45 days after calving for a cow’s reproductive tract to return to normal.

Incidence of metritis and endometritis is highest in summer.

Retained placenta incidence is highest in summer.

Poor nutrition and uterine infections are the leading causes of anestrus.

Diseases that cause abortions in dairy cattle include:
- Brucellosis
- Campylobacteriosis (Vibriosis)
- Chlamydia
- IBR
- Leptospirosis
- Listeriosis
- Neospora
- Trichomoniasis

Cystic ovaries are found in 12-14% of problem breeders. They develop in 10-40% of dairy cows during their lifetime.

Types of cystic ovaries are follicular cysts, luteal cysts, and cystic corpus lutea.

Follicular cysts are thin-walled, anovulatory (not ovulating) cysts. They secrete variable amounts of estrogen.

Luteal cysts are thick-walled cysts. They secrete low levels of progesterone.

Cystic corpus lutea have characteristics similar to normal corpora lutea.

Twinning in dairy cattle has several disadvantages including:
- Reduced milk production during the lactation
- Calving difficulties are more frequent
- Abortion rates are higher
- Twins are often weak at birth
- Potential for a freemartin heifer

Ninety percent (90%) of heifers born twin to a bull are sterile.
Chapter 11: Genetics

ACRONYMS

AGIL ..................................................Animal Genetics and Improvement Laboratory
AIP ..................................................Animal Improvement Program
BAA ..................................................Breed Age Average
BLAD ..............................................Bovine Leukocyte Adhesion Deficiency
BLUP ..............................................Best Linear Unbiased Predictor
CCR ..............................................Cow Conception Rate
CE ..................................................Calving Ease
CM$ ..................................................Cheese Merit
CVM ..............................................Complex Vertebral Malformation
DBH ................................................Difficult Birth in Heifers
DCE ................................................Daughter Calving Ease
DNA ..............................................Deoxyribonucleic Acid
DPR ................................................Daughter Pregnancy Rate
DUMPS ...........................................Deficiency of Monophosphate Synthase
EBV ...............................................Estimated Breeding Value
ETA ................................................Estimated Transmitting Ability
FAIR ..............................................Farm Animal Identification and Records
FM$ ..................................................Fluid Merit
FTI ..................................................Functional Trait Index
FUI ..................................................Functional Udder Index
GMS ...............................................Grazing Merit
GMD ................................................Gold Medal Dam
gPTA ............................................Genomic Predicted Transmitting Ability
HCD ..............................................Haplotypes for Cholesterol Deficiency
HCR ...............................................Heifer Conception Rate
JPI ..................................................Jersey Performance Index
MACE ............................................Multiple-trait Across Country Evaluations
mRNA ............................................Messenger Ribonucleic Acid
NMS ...............................................Lifetime Net Merit
PA ..................................................Parent Average
PCR ...............................................Polymerase Chain Reaction
PL ..................................................Productive Life
PPR ...............................................Progressive Performance Rating
PTA ...............................................Predicted Transmitting Ability
PTI ...............................................Production-Type Index
RFID ............................................Radio Frequency Identification
RNA ..............................................Ribonucleic Acid
rRNA ............................................Ribosomal Ribonucleic Acid
RT ..................................................Recessive Tested
RVC ..............................................Rectovaginal Constriction
SB ..................................................Stillbirth
SCE ...............................................Service Sire Calving Ease
SDM ...............................................Spinal Dysmyelination
SMA ...............................................Spinal Muscular Atrophy
SNP ...............................................Single Nucleotide Polymorphism
STA ...............................................Standardized Transmitting Ability
TPI ...............................................Total Performance Index
tRNA ............................................Transfer Ribonucleic Acid

DEFINITIONS

Allele
Any of the alternative forms of a gene that may occur at a given locus

Chromosome
A threadlike linear strand of DNA and associated proteins found in the nucleus of animal and plant cells that carries the genes and functions in the transmission of hereditary information

Gene
The basic unit of inheritance

Gene mapping
The process of determining where genes are located on individual chromosomes

Genome
The total genetic content of an organism is known as its genome

Genomics
The study of genes or gene products in an organism
Genotype
Genetic make-up of an individual

Heritability
Measure of the percent of phenotypic differences between animals for a single trait that can be transmitted to offspring

Locus
Position that a given gene occupies on a chromosome

Pedigree
A record of ancestry

Phenotype
The observed trait of an individual resulting from the effects of the genotype, the environment, and their interaction

Predicted Transmitting Ability
Measurement of average superiority or inferiority that will be transmitted to an offspring

Proteomics
The study of all of the proteins that genes create

Purebred
A dairy animal whose sire and dam of the same breed are registered or who are eligible to be registered in a herdbook

Reliability
Indicator of the accuracy of genetic evaluations

Siblings
Technical term used to describe brothers and sisters

BASIC GENETICS
The sire determines the sex of a calf.
Dairy cattle have 30 pairs of chromosomes.
The genetic make up of a population can be changed by migration, selection, mutation, and chance.

ANIMAL IDENTIFICATION
Identification is the first step in a herd improvement program.
A registration paper or certificate accompanies a purebred animal and certifies its parentage.

American ID numbers for dairy cattle consist of a three letter country code followed by a twelve digit animal number and will be used by DHI organizations, breed associations, and state animal health departments. The country code for the U.S. is 840.

Visibility is the most important feature when selecting tags or brands for identification.

NAAB CODE FOR SIRES
The NAAB code for a sire has three parts.
The number before the letter indicates the stud from which the bull’s semen can be purchased. It is referred to as the stud code.

1 = Genex/CRI
7 = Select Sires
11 = Alta Genetics
14 = Accelerated Genetics
29 = ABS Global
200 = Semex

The letters indicate the breed.
AY = Ayrshire
BS = Brown Swiss
GU = Guernsey
HO = Holstein
JE = Jersey
MS = Milking Shorthorn
RW = Red and White

The number following the letters is an individual bull identification number.

Example: 7HO00543 is the NAAB Code for CARLIN-M IVANHOE BELL.

ANIMAL MODEL
The Animal Model is the genetic method for evaluating bulls and cows currently used.

When making its evaluation, the Animal Model uses information from:
Parents (pedigree)
Individual performance
Progeny (offspring)
GENETIC EVALUATIONS

The Council on Dairy Cattle Breeding publishes U.S. genetic evaluations.

Official evaluations are released in April, August and December. Genomic evaluations are released monthly.

A minimum of ten (10) daughters is required for a bull to have a bull proof published.

The genetic base for genetic evaluations is updated every five years. It was most recently updated in December 2014 and is the average PTA of animals born in 2010. The next base change is scheduled for 2020.

INTERBULL is the name of the International Bull Evaluation Service based in Uppsala, Sweden.

GENETIC INDEXES

Lifetime Net Merit (NMS) is a genetic index. It combines the following traits for Holsteins and Brown Swiss:

- Milk
- Fat
- Protein
- Somatic cell score
- Productive life
- Feet and legs composite
- Udder composite
- Body weight composite
- Daughter pregnancy rate
- Heifer conception rate
- Cow conception rate
- Calving ability*
- Cow livability

* NMS for other breeds does not include calving ability.

Total Performance Index (TPI) is a genetic index used by the Holstein breed that is determined by placing emphasis on production and type. The traits included are:

- Protein
- Fat
- Feed Efficiency
- Type
- Dairy Form
- Udder Composite
- Feet and Leg Composite
- Productive Life
- Cow livability
- Somatic Cell Score
- Fertility Index
- Daughter Calving Ease
- Daughter Stillbirth

Traits used in the Udder Composite Index for Holsteins are:

- Fore udder attachment
- Rear udder height
- Rear udder width
- Udder depth
- Udder cleft
- Front teat placement
- Rear teat placement
- Teat length
- Stature

Traits used in the Body Weight Composite Index for Holsteins are:

- Stature
- Strength
- Body depth
- Rump width
- Dairy form

The Feet and Legs Composite Index for Holsteins is calculated using the traits of:

- Foot angle
- Rear legs – rear view
- Feet and legs score
- Stature
Traits used in the Dairy Capacity Composite Index for Holsteins are dairy form and strength.

The Jersey Performance Index (JPI) is a genetic index used by the Jersey breed that is determined by placing emphasis on production and type. The traits included are:

- PTA Protein
- PTA Fat
- CFP Milk
- Productive Life
- Livability
- Somatic Cell Score
- Daughter Pregnancy Rate
- Cow Conception Rate
- Heifer Conception Rate
- Functional Trait Index*

*There are 14 linear traits used for calculating the Functional Trait Index for Jerseys.

The Jersey Udder Index serves as an indicator of mastitis resistance in Jerseys; it uses the following traits:

- Fore udder
- Rear udder height
- Rear udder width
- Udder cleft
- Udder depth
- Teat placement
- Teat length

**CALVING EASE**

Farm employees should assign calving ease scores at the time of calving to describe the event. The scoring system is:

1 = No problem or unobserved
2 = Slight problem
3 = Needed assistance
4 = Considerable force
5 = Extremely difficult

The Council on Dairy Cattle Breeding calculates two Calving Ease Summaries for the National Association of Animal Breeders (NAAB):

- Service Sire Calving Ease measures a bull’s tendency to sire calves that are born easily.
- Daughter Calving Ease measures the influence of the sire of the cow on calving ease.

**STILLBIRTH**

It is recommended that farm employees record stillbirth scores to provide accurate calf mortality information. The scoring system is:

1 = the calf was born alive and was alive 48 hours postpartum
2 = the calf was born dead
3 = the calf was born alive but died within 48 hours postpartum

Daughter Stillbirth measures the ability of a particular cow (daughter) to produce live calves.

Service Sire Stillbirth measures the tendency of calves from a particular service sire to be stillborn more or less often.

Stillbirth evaluations are expressed as percent stillbirths in heifers (%SBH), where stillborn calves are those scored as dead at birth or born alive but died within 48 hours of birth.

**INBREEDING**

Inbreeding can decrease mature equivalent (ME) milk production by 60 to 80 pounds per lactation for each percent increase in inbreeding.

Consequences of inbreeding include:
- Decreased general vigor
- Decreased production
- Decreased reproductive performance
- Increased calf mortality
- Increasing similarity between animals
- Smaller mature size
- More recessive genes exposed
- Slower growth rate
UNDESIRABLE RECESSIVE TRAITS

Undesirable recessive traits in Brown Swiss cattle are:
- Weaver
- Spiderleg
- Spinal Dysmyelination
- Spinal Muscular Atrophy

Undesirable recessive traits in Holsteins include:
- Bovine Leukocyte Adhesion Deficiency
- Brachyspina
- Bulldog
- Complex Vertebral Malformations
- DUMPS
- Dwarfism
- Hairless
- Haplotype for Cholesterol Deficiency
- Imperfect Skin
- Mule-Foot (Syndactylism)
- Pink Tooth (Porphyria)
- Prolonged Gestation

Undesirable recessive traits found in Jerseys are:
- Limber Legs
- Rectovaginal Constriction

Undesirable recessive traits have not been documented for the Ayrshire, Guernsey, or Milking Shorthorn breeds.
Chapter 12: Animal Health

**ACRONYMS**

BLV .................................................. Bovine Leukosis Virus  
BRSV ............................................ Bovine Respiratory Syncytial Virus  
BSE .................................................. Bovine Spongiform Encephalopathy  
BVD .................................................. Bovine Virus Diarrhea  
DA ..................................................... Displaced Abomasum  
ELISA ............................................ Enzyme-Linked Immunosorbent Assay  
FARAD ............. Food Animal Residue Avoidance Databank  
IBR .................................................. Infectious Bovine Rhinotracheitis  
Ig .................................................... Immunoglobulin  
IM ..................................................... Intramuscular  
IV ..................................................... Intravenous  
MLV .................................................. Modified Live Virus  
NAHMS ...... National Animal Health Monitoring System  
PCR .................................................. Polymerase chain reaction  
VFD .................................................. Veterinary Feed Directive

**DEFINITIONS**

**Antibiotics**  
Chemical agents given to animals that kill or stop growth of bacteria.

**Antibodies (immunoglobulins)**  
Proteins synthesized by organs of the cow's immune system that aid in the elimination of foreign substances such as microorganisms; the main immunoglobulin isotypes are IgA, IgE, IgG, and IgM

**Balling gun**  
Instrument used to give an animal a pill.

**Biosecurity**  
Management practices that protect the herd from the entry of new diseases and minimize the spread and/or adverse effects of diseases in the herd

**Carrier**  
An animal that is infected with a disease but has no clinical symptoms

**Disease**  
A change in the normal state of the body, or one or more of its organs, which disturbs the proper performance of body functions

**Enzyme**  
Protein that acts as a catalyst in starting or speeding up specific chemical reactions

**Erythrocytes**  
Red blood cells; only cells that have no nucleus

**Morbidity rate**  
Number of sick animals during a specified period of time

**Mortality rate**  
Number of dead animals during a specified period of time

**Pathogen**  
Any microorganism that causes disease

**Phagocytosis**  
Process by which white blood cells engulf microorganisms

**Physiology**  
Branch of biology that deals with the process, activities, and phenomena of life and living organisms

**Toxin**  
Poison produced by microorganisms that kills cells

**Trocar**  
An instrument used to puncture the rumen in cases of bloat

**Zoonoses**  
Diseases and infections that are transmitted between vertebrate animals and human beings
NORMAL STATS FOR DAIRY ANIMALS

Temperature
  Calf: 102.5°F
  Adult dairy cow: 101.5°F

Pulse rate (cow)
  60 – 70 heart beats per minute

Respiratory rate (cow)
  30 breaths per minute

ANATOMY AND PHYSIOLOGY

The basic tissues that make up a cow's body are:
  Connective
  Epithelium
  Muscle
  Nerve

The organ systems found in the body are:
  Circulatory
  Digestive
  Endocrine
  Integumentary (skin)
  Muscular
  Nervous
  Reproductive
  Respiratory
  Skeletal

Insulin is a hormone produced by the pancreas that promotes cell growth and division.
The parathyroid gland is responsible for mobilizing calcium from the bone.
Ligaments connect one bone to another bone; tendons connect a muscle to a bone.
The mitochondrion is known as the powerhouse of the cell because all energy is produced in this cell part.
Approximately 400 pounds of blood are pumped through the udder to produce one pound of milk. The external pudic artery is the major artery supplying blood to the udder.

DISEASE

Diseases can be classified on the basis of their primary cause:
  Environmental
  Genetic
  Infectious
  Metabolic

Infectious diseases of cattle result from the interplay between three factors:
  The animal and its ability to resist disease (immunity)
  An infectious agent (bacteria, viruses, and parasites)
  The environment

Diseases in dairy cattle that are caused by a virus include:
  Blue tongue
  BLV
  BRSV
  BVD
  Cow pox
  IBR
  PI-3
  Warts

Diseases caused by a clostridial organism include:
  Blackleg
  Malignant edema
  Overeating disease
  Tetanus

Examples of metabolic diseases are:
  Displaced abomasum
  Ketosis
  Laminitis
  Milk fever
  Retained placenta

Diseases with a color in their name include:
  Blackleg
  Blue tongue
  Pinkeye
  Red nose
  Red water
  White heifer disease
  White muscle disease
Zoonoses that may be transmitted from cattle to humans include:

- Brucellosis
- Cowpox
- Cryptospirosis
- Leptospirosis
- Listeriosis
- Q-fever
- Rabies
- Ringworm
- Salmonellosis
- Tuberculosis

**PROPER AND COMMON DISEASE NAMES**

<table>
<thead>
<tr>
<th>Proper Name</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetonemia</td>
<td>Ketosis</td>
</tr>
<tr>
<td>Bovine spongiform encephalopathy</td>
<td>Mad cow disease</td>
</tr>
<tr>
<td>Brucellosis</td>
<td>Bang’s disease</td>
</tr>
<tr>
<td>Displaced abomasum</td>
<td>Twisted stomach</td>
</tr>
<tr>
<td>Dystocia</td>
<td>Calving difficulty</td>
</tr>
<tr>
<td>Fibropapellomatosis</td>
<td>Warts</td>
</tr>
<tr>
<td>Hypocalcemia</td>
<td>Milk fever</td>
</tr>
<tr>
<td>Infectious bovine keratoconjunctivitis</td>
<td>Pinkeye</td>
</tr>
<tr>
<td>Infectious bovine rhinotracheitis</td>
<td>Red nose</td>
</tr>
<tr>
<td>Laminitis</td>
<td>Founder</td>
</tr>
<tr>
<td>Listeriosis</td>
<td>Circling disease</td>
</tr>
<tr>
<td>Papillomatous digital dermatitis</td>
<td>Hairy heel warts</td>
</tr>
<tr>
<td>Paratuberculosis</td>
<td>Johne’s disease</td>
</tr>
<tr>
<td>Parturient paresis</td>
<td>Milk fever</td>
</tr>
<tr>
<td>Pneumonic pasteurellosis</td>
<td>Shipping fever</td>
</tr>
<tr>
<td>Pododermatitis</td>
<td>Foot rot</td>
</tr>
<tr>
<td>Traumatic gastritis</td>
<td>Hardware disease</td>
</tr>
</tbody>
</table>

**BLACKLEG**

Blackleg is an acute, fever producing disease of cattle and sheep.

The bacterium *Clostridium chauvoei* causes the disease.

Blackleg most often occurs in pastured cattle during the spring or fall.

**BLOAT**

Bloat is the condition when a cow cannot belch.

Cows grazing rapidly growing legumes are susceptible to bloat.

Gases associated with bloat are carbon dioxide and methane.

Poloxolene may be administered to prevent or correct bloat.

Simple laundry detergent can be used to alleviate bloat in cattle.

**BOVINE LEUKOSIS VIRUS**

Bovine Leukosis Virus (BLV) is a retrovirus that infects lymphoid tissue.

The virus is transmitted to cattle mainly by direct exposure with infected blood, saliva, semen, and milk.

Signs of BLV infection include:

- Tumors in lymphoid tissues
- Enlarged lymph nodes
- Weight loss
- Decreased milk production
- Fever
- Loss of appetite
- Rear limb weakness or paralysis
- Protruding eyeballs
- Gastrointestinal obstructions
- Increased blood lymphocytes counts

**ACIDOSIS**

Acidosis is a metabolic disorder that often occurs when a dairy cow eats too much grain.
**BRUCELLOSIS**

Brucellosis (Bang’s disease) is caused by a bacterium of the genus *Brucella*. Infections may cause:
- Abortions
- Stillborn or weak calves
- Retained placentas
- Weight loss
- Reduced milk yield

The milk ring test is used to identify Brucellosis in cattle.

Undulant fever is the human equivalent of brucellosis. Drinking raw milk contaminated with *Brucella* bacteria is the means of contracting the disease.

**COCCIDIOSIS**

Coccidiosis is a disease in calves that is also very common in poultry and is characterized by chronic diarrhea.

Signs of coccidia in calves include:
- Watery scours with flakes of blood
- Dull listlessness
- Mucus in the feces
- Dehydration
- Weight loss

Methods to control coccidiosis include:
- Accurate diagnosis and monitoring
- Maintain sanitation
- Limit stress
- Medicate

There are two classes of anti-coccidial drugs.
- Coccidiocides kill coccidia as they migrate through the intestine, interrupting the organism’s life cycle.
- Coccidiostats inhibit the coccidia’s growth and development, preventing them from reproducing.

**CRYPTOSPORIDIOSIS**

*Cryptosporidium parvum* is a protozoan parasite that has been recognized as a common cause of diarrhea in calves and other animals, including humans.

Management practices that can reduce cryptosporidiosis in newborns include:
- Provide clean, dry areas for cows to calve
- Feed colostrum using a clean bottle and sanitized nipple
- Provide clean, dry pens for calves
- Allow pens to thoroughly dry between calves
- Feed and care for sick calves last

**DISPLACED ABOMASUM**

A displaced abomasum is the condition where the abomasum moves positions inside the body cavity and twists, causing severe digestive problems.

Most displaced abomasums are left-sided (80-90%).

Predisposing factors for a cow’s displaced abomasum include:
- Acidotic rations
- Advanced pregnancy
- High milk production
- Hypocalcemia
- Lack of exercise
- Lead feeding
- Selenium deficiency
- Stress of calving

**FAT COW SYNDROME**

Fat cow syndrome is a disease when a cow gains too much weight during late lactation or the dry period.

The disease is almost always associated with other problems at calving including:
- Displaced abomasum
- Fatty liver syndrome
- Mastitis
- Metritis
- Milk fever
- Retained placenta

**GRASS TETANY**

Grass tetany is a metabolic disorder associated with a magnesium deficiency.

The disorder occurs most often in adult cows milking heavily and grazing lush green pastures.
HARDWARE DISEASE

Hardware disease is the general term used to describe a situation where a piece of metal has been swallowed and then collects in and/or pierces the reticulum.

A magnet is often given to an animal to prevent hardware disease.

HEAT STRESS

The ideal environmental temperature range for dairy cattle is 25 to 65°F.

A dairy cow can lose body heat through convection, conduction, radiation, and evaporation.

Methods used to cool cows during heat stress include:
- Shade
- Air exchange
- Air movement
- Access to water
- Sprinkle

JOHNE'S DISEASE

Johne's disease is caused by the bacterium *Mycobacterium paratuberculosis*, which infects the small intestine of ruminant animals, especially cattle, sheep, and goats.

Cattle with Johne's disease are usually infected soon after birth, but the first symptoms do not appear until 2 to 4 years of age.

Clinical symptoms of Johne's disease:
- Diarrhea
- General unthriftiness
- Soft swelling in the jaw
- Substantial drops in milk production
- Weight loss
- Susceptibility to other problems such as infertility
- Death

Types of tests for Johne's disease commonly used today are:
- Tests that measure antibodies in blood serum
- Tests that find the organism in manure by fecal culture or polymerase chain reaction (PCR)

No effective treatment can be recommended for Johne's disease. Therefore, producers must concentrate on preventing new infections.

Strategies for preventing new Johne's disease infections include:
- Prevent highly susceptible newborn calves and young animals from ingesting manure from adults, whether from the dam, the environment, or feed and water.
- Calving areas should be dry, free of manure, and well bedded.
- Remove the calf from the dam immediately after birth.
- Do not use the same equipment to clean up manure and to load feed.
- Do not walk in feed bunks.
- Identify and remove infected animals and their manure.
- Investigate all animals considered for purchase, and buy only from test-negative herds with no history of Johne's disease.
- Do not allow test-positive cows to calve.
- Sell at birth all calves from positive cows.

KETOSIS

Ketosis (Acetonemia) is a condition when there is an accumulation of ketones in the body.

The first signs of ketosis are:
- Cow goes off feed
- Ketone (acetone) smell on the cow's breath

Propylene glycol is fed or administered to cows to treat ketosis.

Niacin may be added to feeds to aid in the prevention of ketosis.

LAMENESS

A cow may experience lameness for many reasons including:
- Abscess
- Foot rot
- Infection
- Injury
- Soft sole syndrome
- Trimming too close
The most important practices for the reduction of foot problems are hoof trimming and footbaths.

The purposes of a footbath are:
- Remove irritants from the foot and between the toes
- Disinfect and cleanse the foot
- Dry and toughen the foot

Substances commonly used in a footbath include copper sulfate, zinc sulfate, and formalin.

The most common walk-through treatment for foot rot is a 5% solution of copper sulfate.

**MAD COW DISEASE**

Mad Cow Disease (Bovine Spongiform Encephalopathy) is a fatal brain disease of cattle; it affects the brain and spinal cord.

The disease originated in the United Kingdom.

**MILK FEVER**

Milk fever is caused by a deficiency of blood calcium related to an imbalance of calcium, phosphorus, and Vitamin D.

Most cases of milk fever occur within 72 hours after calving.

About 6 percent of dairy cows are affected by milk fever each year.

Groups of cows that are at greater risk of having milk fever are older cows, fatty liver cows, and Jerseys.

Symptoms of milk fever include:
- Cow goes down
- Rapid heart rate
- Dilated eyes
- Below normal body temperature

Calcium glutamate is an intravenous injection for immediate and temporary treatment of milk fever.

**MYCOTOXINS**

A mycotoxin is a toxin produced by a fungus, especially a mold.

Members of the mycotoxin family that affect animals include:
- Aflatoxin
- Trichotheecenes
- Zearalenone
- Fumonisin
- Ochratoxins
- Ergot alkaloid

Clinical symptoms of mycotoxins in dairy cattle include:
- Abortions
- Cystic ovaries
- Feed refusal
- Gastrointestinal upsets
- Infertility
- No milk
- Poor response to therapy
- Rise in metabolic disease due to liver malfunction
- Silent heats
- Unthriftiness
- Weight loss

**NEOSPOROSIS**

Neosporosis is a disease that causes abortions and occasionally causes birth of weak “dummy” calves that have serious brain infections.

A protozoan, *Neospora caninum*, causes the disease.

Dogs are classified as a definitive host for the causative organism.

**PARASITES**

Internal parasites in dairy cattle include:
- Lung worms
- Round worms
- Stomach worms
- Liver flukes
- Coccidia

The brown stomach worm is the most economically detrimental parasite of cattle.

Anthelminthics are a class of chemicals used to kill internal parasites.

External parasites in dairy cattle include flies, lice, mites, mosquitoes, and ticks.
Lice are most troublesome during winter and spring.

Types of flies commonly found around the dairy farm are:
- House fly
- Stable fly
- Face fly
- Horn fly
- Heel fly
- Deer fly

The face fly spreads pinkeye.
The heel fly is associated with grubs or warbles in cattle.

House and stable flies need heat, moisture, and a suitable breeding medium to survive and reproduce.

The phases of a fly’s life cycle are:
- Egg
- Larvae
- Pupa
- Adult

Sanitation is the most effective management tool to control flies on a dairy farm.

**PINKEYE**

Pinkeye is a highly contagious disease characterized by an infection of the cornea or membrane lining of the eye; it is most prevalent during the summer. The primary infectious agent is *Moraxella Bovis*, a bacterium.

Measures for preventing pinkeye include:
- Fly control
- Vaccination
- Clipping pastures to prevent seed-head development

**PNEUMONIA**

Predisposing causes of pneumonia in calves include:
- Poor ventilation
- High humidity
- Dirty pens
- Poor nutrition
- Overcrowding
- Wide range of ages in one pen
- Drastic temperature changes

Types of organisms that can cause pneumonia are:
- Bacteria
- molds
- Parasites
- Viruses
- Yeasts

Pneumonia-causing bacteria include:
- *Pasteurella multocida*
- *Mannheimia* (Pasteurella) *haemolytica*
- *Haemophilus somnus*
- *Mycoplasma* species

Pneumonia-causing viruses include:
- Infectious bovine rhinotracheitis virus (IBR)
- Parainfluenza-3 virus (PI3)
- Bovine viral diarrhea virus (BVDV)
- Bovine respiratory syncytial virus (BRSV)

**RABIES**

Rabies is a deadly viral infection that is mainly spread by infected animals.

Suspected cases of rabies are confirmed by:
- Fluorescent antibody test of brain
- By injecting brain tissue into mice and observing

Non-domestic animals that can cause an infection of cattle with rabies include:
- Bat
- Bobcat
- Coyote
- Fox
- Raccoon
- Skunk

**RINGWORM**

Ringworm is a contagious disease caused by a fungus that can be easily spread to other animals. The fungus infection invades the hair follicles and the outer layer of skin.

Tincture of iodine may be used to control ringworm.
**SCOURS**

Scours is a disease in calves characterized by diarrhea, dehydration, and unthriftiness. It is easily transferred from one animal to another through the manure of an infected animal.

Bacteria that commonly cause scours among calves include *Escherichia coli*, *Salmonella*, and *Clostridium perfringens*.

Viruses that commonly cause scours among calves include *Rotavirus* and *Coronavirus*.

Protozoa that commonly cause scours among calves include coccidia and *Cryptosporidium*.

**SHIPPING FEVER**

Shipping fever is a respiratory disease that cattle often develop after being transported by truck or rail.

**UDDER EDEMA**

Udder edema is a condition that exists when an excessive amount of lymph accumulates between the skin and secretory tissue of the udder.

**WARTS**

Warts are caused by a virus and are contagious to other calves.

**WHITE MUSCLE DISEASE**

White muscle disease is caused by a deficiency of Vitamin E and/or selenium.

The best way to prevent the disease is to supplement Vitamin E and selenium.

**ANTIBIOTICS**

A cow may be given antibiotics in numerous ways including:

- Intramuscular injection
- Intravenous injection
- Intraperitoneal injection
- Intramammary infusion
- Intrauterine infusion
- In the ration

The jugular vein is the ideal location for most intravenous injections.

**VACCINATIONS**

Calfhood vaccinations should be considered for the following diseases:

- Blackleg
- Brucellosis
- BVD
- Clostridia
- IBR
- Leptospirosis
- Malignant edema
- PI-3
- Scours

The major types of vaccines are killed and modified live.

**MEDICINE CHEST**

Suitable items for a medicine chest for the average herd include:

- Alcohol
- General use disinfectant
- Iodine solution
- Bloat remedy
- Teat and udder ointments
- Adhesive tape
- Scissors
- Soap
- Trocar and canula
- Petroleum jelly
- Sterile bandaging material
- Wash basin
- Syringe and needles
Chapter 13: Nutrient Management

ACRONYMS

BMP ............................................Best management practices
CAFO .........................Concentrated animal feeding operation
CNMP ..........Comprehensive nutrient management plan
EQIP ......................Environmental Quality Incentive Program
IPM ..........................Integrated pest management
NPS .....................................Non-point source

WATER

Groundwater is water in the soil. It may resurface in a brook, stream, or pond. Water in drinking water wells is from groundwater.

Surface water is water in any exposed body of water including streams, rivers, ponds, lakes, and oceans.

The leading environmental issues facing farmers are phosphorus (P) and nitrogen (N) contamination of ground and surface water.

Runoff is the movement of nutrients across the surface of soils to surface water (streams, rivers, ponds).

Leaching is the movement of nitrate (a nitrogen containing compound) through soils to groundwater.

Well-managed alternative water sources usually provide animals cleaner water and help prevent exposure to certain diseases.

MANURE

Manure storage allows manure to be applied according to crop needs rather than on a daily basis.

Types of storage facilities for manure are:
   Solid manure storage (dry stack barn)
   Slurry manure storage (anaerobic pit, earthen structure, or above ground tank)
   Liquid manure storage (lagoon)

Slurry manure storage is the most common type of manure storage on dairy farms.

General categories of odor-controlling chemicals for manure management are:
   Masking agents
   Odor counteractants
   Enzymatic products

Manure testing (measuring nutrient content) may reduce fertilizer purchases and/or prevent application of nutrients in excess of crop requirements.

Factors that affect the nutritive value of manure are:
   Amount of added feed, bedding and water
   Climate
   Crop
   Method of application
   Method of collection
   Method of storage
   Soil characteristics
   Time of application
   Type of feed ration

NON-POINT SOURCE POLLUTION

Non-point source usually refers to pollution (nutrients, chemicals, toxins or pathogens) that contaminate ground or surface water.

Non-point source pollution originates from multiple and diffuse sources which are not readily identified.

Examples of non-point sources of nutrient pollution include most farms, agricultural cropland, and suburban lawns receiving fertilizer.

BEST MANAGEMENT PRACTICES

Best management practices (BMP’s) are practices that protect water quality while improving profitability of the farm.

The Soil and Water Conservation District (SWCD) is a local board that defines priority watersheds, approves conservation plans, and distributes cost share funds to farmers for implementation of BMP’s.
Cost-share is a financial incentive from the state or federal government to the farmer to help pay for equipment or practices that reduce pollution.

Best management practices for livestock farms include:
- Fencing animals out of bodies of surface water
- Installation of an alternative water source
- Installation of stream crossings
- Installation of buffer strips between cropland and surface water
- Shoreline or creek bank stabilization and protection
- Animal travel lane stabilization
- Rotational loafing lot management system
- Installation of a storm water retention pond
- Planting small grain cover crops
- Installation of a manure storage facility
- Manure testing
- Controlling surface water runoff
- Implementation of a nutrient management plan

Buffer strips are areas of grassland installed between cropland or feedlots and waterways to take up nutrients and prevent nutrients from running off into water.

Benefits of small grain cover crops include:
- Increase use of land applied nutrients
- Stabilize cropland
- Prevent erosion in wintertime

The rotational loafing lot management system consists of vegetated exercise and rest areas installed to replace dirt exercise lots. Its benefits are:
- Runoff is reduced because grass growing on lots uses nutrients
- Soil erosion is reduced because grass growing on lots stabilizes soil
- Cows stay cleaner

Methods of reducing soil erosion include:
- Contour cropping
- Cover crop
- Grass waterways
- Reduced tillage
- Soil seeding
- Strip cropping
- Terracing
- Wind breaks

**BEDDING MATERIALS**

Common dairy cattle bedding materials include:
- Newspaper
- Recycled manure solids
- Sand
- Sawdust (green or kiln-dried)
- Shavings
- Straw

**NUTRIENT MANAGEMENT**

A nutrient management plan is a plan for the land application of manure and fertilizer to meet crop needs.

Animal density impacts nutrient management on farms and is usually measured as animal units per acre. An animal unit is 1000 pounds of live weight of any animal.

Areas that contribute waste that must be handled are:
- Feeding area
- Housing or loafing area
- Holding pen area
- Milking parlor
- Runoff area

**WASTE MANAGEMENT SYSTEMS**

The following factors should be considered when planning a waste management system:
- Environmental (Rainfall, stream location, prevailing winds, evaporation, temperature, topography, soil type, surface drainage, water table depth)
- Operational (Herd size, cropping & feeding practices, land area, cropland for waste application, existing buildings & machinery)
- Economic (Availability of capital and labor, future expansion plans)
- Social (Neighbors, zoning)
- Legal Requirements (EPA General Permit, State and local permits)
COMPOSTING

Composting requires air, moisture, nutrients, and carbon.

Composting is an acceptable way of disposing of dead calves and cows. Two to six months are required for composting depending on the size of the animal and the rate of the compost reaction.

Advantages of composting manure include:
- Reduces volume
- Doesn’t attract flies and insects
- Reduces potential for nutrient runoff
- Weeds and pathogens destroyed
- More uniform than manure
- Reduces fertilizer needs
- Excellent soil conditioner

FERTILIZER

Fertilizer labels have three important numbers.
- The first number is the amount of nitrogen (N).
- The second number is the amount of phosphate (P₂O₅).
- The third number is the amount of potash (K₂O).

These three numbers represent the primary nutrients: nitrogen (N), phosphorus (P), and potassium (K).

A bag of 15-10-5 fertilizer contains 15 percent nitrogen, 10 percent phosphate, and 5 percent potash.
Appendix: Suggested Reading


