Table of Contents

Chapter 1 .. Dates in Dairy History ... 3
Chapter 2 .. People and Organizations .. 6
Chapter 3 .. Dairy Breeds ... 10
Chapter 4 .. Dairy Cattle Judging, Fitting and Showing 12
Chapter 5 .. Calf and Heifer Management 16
Chapter 6 .. Nutrition, Feeds and Feeding 19
Chapter 7 .. Lactation and Milking Management 28
Chapter 8 .. Dairy Products and Milk Marketing 35
Chapter 9 .. Miscellaneous ... 42
Chapter 10 ... Reproduction ... 46
Chapter 11 ... Genetics ... 52
Chapter 12 ... Animal Health ... 57
Chapter 13 ... Nutrient Management .. 67
Appendix .. Suggested Reading .. 70

Note

Senior 4-H’ers competing in district and state 4-H dairy quiz bowl contests in Virginia may be quizzed on any of the information contained within this year’s study materials.

Junior 4-H’ers will only be responsible for Chapters 1-9.

Disclaimer

This publication is a living document and is updated on an annual basis. Given the pace of change in today’s world, information can become dated very quickly. If you find information that has changed, feel free to contact the editor, so your suggestions may be included in the next revision. Thanks!
<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1611</td>
<td>First cows arrived at the Jamestown Colony</td>
</tr>
<tr>
<td>1624</td>
<td>First cows arrived at the Plymouth Colony</td>
</tr>
<tr>
<td>1810</td>
<td>First dairy cooperative in the U.S. organized in Goshen, Connecticut</td>
</tr>
<tr>
<td>1851</td>
<td>First commercial cheese factory established in New York</td>
</tr>
<tr>
<td>1856</td>
<td>First patent for condensed milk</td>
</tr>
<tr>
<td></td>
<td>First commercial butter factory established in New York</td>
</tr>
<tr>
<td>1857</td>
<td>First successful condensory built by Gail Borden in Burrville, Connecticut</td>
</tr>
<tr>
<td>1862</td>
<td>Morrill Act enacted to create the Land Grant College System</td>
</tr>
<tr>
<td>1868</td>
<td>American Jersey Cattle Club founded</td>
</tr>
<tr>
<td>1877</td>
<td>American Guernsey Cattle Club founded</td>
</tr>
<tr>
<td>1878</td>
<td>Centrifugal cream separator invented</td>
</tr>
<tr>
<td>1880</td>
<td>Brown Swiss Breeders Association founded</td>
</tr>
<tr>
<td>1884</td>
<td>Milk bottle invented</td>
</tr>
<tr>
<td>1885</td>
<td>Hoard's Dairyman magazine first published</td>
</tr>
<tr>
<td></td>
<td>Holstein-Friesian Association of America formed</td>
</tr>
<tr>
<td>1886</td>
<td>Automatic bottle filler and capper patented</td>
</tr>
<tr>
<td>1887</td>
<td>Hatch Act enacted to create state agricultural experiment stations</td>
</tr>
<tr>
<td>1890</td>
<td>Babcock test for butterfat developed</td>
</tr>
<tr>
<td>1895</td>
<td>Pulsator invented</td>
</tr>
<tr>
<td>1904</td>
<td>American Dairy Goat Association organized</td>
</tr>
<tr>
<td>1905</td>
<td>First cow testing association in the U.S. organized in Michigan</td>
</tr>
<tr>
<td>1906</td>
<td>American Dairy Science Association founded</td>
</tr>
<tr>
<td></td>
<td>First National Dairy Show held in Chicago</td>
</tr>
<tr>
<td></td>
<td>Brown Swiss cattle recognized as an official dairy breed in the U.S.</td>
</tr>
<tr>
<td></td>
<td>National Dairy Council organized</td>
</tr>
<tr>
<td>1914</td>
<td>Smith-Lever Act signed establishing the Cooperative Extension Service</td>
</tr>
<tr>
<td>1916</td>
<td>National Milk Producers Federation founded</td>
</tr>
<tr>
<td>1917</td>
<td>Journal of Dairy Science first published</td>
</tr>
<tr>
<td>1922</td>
<td>Capper-Volstead Act passed by Congress to empower farmers and agricultural producers to market, price, and sell their products through cooperative means</td>
</tr>
<tr>
<td>1926</td>
<td>Dairy Herd Information testing program started</td>
</tr>
<tr>
<td>1931</td>
<td>Hoard's Dairyman cow judging contest begun</td>
</tr>
<tr>
<td>1932</td>
<td>First plastic coated paper milk cartons introduced commercially</td>
</tr>
<tr>
<td>1935</td>
<td>National Cooperative Sire Proving Program initiated</td>
</tr>
<tr>
<td>1936</td>
<td>First dairy cattle A.I. organization in Denmark</td>
</tr>
<tr>
<td>Year</td>
<td>Event</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>1937</td>
<td>First list of sires proven in DHIA testing published by USDA</td>
</tr>
<tr>
<td></td>
<td>Federal Agricultural Marketing Agreement Act, which provides for federal milk marketing orders, passed</td>
</tr>
<tr>
<td>1938</td>
<td>Artificial insemination began in the U.S.</td>
</tr>
<tr>
<td></td>
<td>First A.I. cooperative in the U.S. organized in New Jersey by E. J. Perry</td>
</tr>
<tr>
<td></td>
<td>First bulk tanks used on farms</td>
</tr>
<tr>
<td>1940</td>
<td>American Dairy Association founded</td>
</tr>
<tr>
<td></td>
<td>Purebred Dairy Cattle Association formed</td>
</tr>
<tr>
<td>1942</td>
<td>National Association of Animal Breeders organized</td>
</tr>
<tr>
<td>1943</td>
<td>The PDCA Dairy Cow Unified Score Card was first copyrighted</td>
</tr>
<tr>
<td>1945</td>
<td>First edition of National Research Council’s Nutrient Requirements of Dairy Cattle published</td>
</tr>
<tr>
<td>1949</td>
<td>National Dairy Shrine founded</td>
</tr>
<tr>
<td>1951</td>
<td>Computer first used to calculate DHIA records in Utah</td>
</tr>
<tr>
<td></td>
<td>First U.S. young sire sampling program established</td>
</tr>
<tr>
<td></td>
<td>First successful embryo transfer in dairy cattle</td>
</tr>
<tr>
<td></td>
<td>First commercial milk replacer for calves introduced</td>
</tr>
<tr>
<td>1953</td>
<td>Frosty, the first U.S. calf resulting from frozen semen, was born</td>
</tr>
<tr>
<td>1955</td>
<td>Flavor control equipment introduced commercially</td>
</tr>
<tr>
<td>1960</td>
<td>National Mastitis Council founded</td>
</tr>
<tr>
<td>1964</td>
<td>Commercial introduction of plastic milk jug</td>
</tr>
<tr>
<td></td>
<td>Red and White Dairy Cattle Association organized</td>
</tr>
<tr>
<td>1965</td>
<td>National Dairy Herd Information Association organized</td>
</tr>
<tr>
<td>1967</td>
<td>World Dairy Expo founded and holds first show</td>
</tr>
<tr>
<td>1974</td>
<td>Nutrition labeling of fluid milk products begins</td>
</tr>
<tr>
<td>1983</td>
<td>INTERBULL developed</td>
</tr>
<tr>
<td></td>
<td>Dairy and Tobacco Adjustment Act created National Dairy Promotion and Research Board and a 15-cent dairy check-off</td>
</tr>
<tr>
<td>1989</td>
<td>Animal Model first used for USDA genetic evaluations</td>
</tr>
<tr>
<td>1993</td>
<td>Bovine somatotropin, first product of biotechnology for animals, approved</td>
</tr>
<tr>
<td>1994</td>
<td>Holstein-Friesian Association officially changes its name to Holstein Association USA, Inc.</td>
</tr>
<tr>
<td>1995</td>
<td>Multi-trait Across Country Evaluations (MACE) for bulls implemented by INTERBULL</td>
</tr>
<tr>
<td>1998</td>
<td>Dairy Calf and Heifer Association founded</td>
</tr>
<tr>
<td>2000</td>
<td>First U.S. commercial robotic milker installed in Wisconsin</td>
</tr>
<tr>
<td></td>
<td>Federal Milk Marketing Orders reformed to reduce the number of orders</td>
</tr>
<tr>
<td>2001</td>
<td>National Research Council’s Nutrient Requirements of Dairy Cattle most recently updated (7th edition)</td>
</tr>
<tr>
<td>2002</td>
<td>North American Intercollegiate Dairy Challenge established</td>
</tr>
<tr>
<td>2003</td>
<td>Sexed semen becomes commercially available</td>
</tr>
<tr>
<td>2006</td>
<td>Dairy Cattle Reproductive Council founded</td>
</tr>
<tr>
<td>Year</td>
<td>Event</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>2009</td>
<td>Most recent revision of the PDCA Dairy Cow Unified Score Card</td>
</tr>
<tr>
<td></td>
<td>Genomic predictions of genetic merit officially released by USDA-AIPL</td>
</tr>
<tr>
<td></td>
<td>Jersey Youth Academy established</td>
</tr>
<tr>
<td>2011</td>
<td>PDCA Showmanship Evaluation Card revised</td>
</tr>
<tr>
<td>2013</td>
<td>Council on Dairy Cattle Breeding assumes responsibility for publishing U.S. dairy genetic evaluations</td>
</tr>
</tbody>
</table>
ACRONYMS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADA</td>
<td>American Dairy Association</td>
</tr>
<tr>
<td>ADGA</td>
<td>American Dairy Goat Association</td>
</tr>
<tr>
<td>ADSA</td>
<td>American Dairy Science Association</td>
</tr>
<tr>
<td>AFBF</td>
<td>American Farm Bureau Federation</td>
</tr>
<tr>
<td>AJCA</td>
<td>American Jersey Cattle Association</td>
</tr>
<tr>
<td>AMS</td>
<td>Agricultural Marketing Service</td>
</tr>
<tr>
<td>AOAC</td>
<td>American Organization of Analytical Chemists</td>
</tr>
<tr>
<td>APHIS</td>
<td>Animal and Plant Health Inspection Service</td>
</tr>
<tr>
<td>ARS</td>
<td>Agricultural Research Service</td>
</tr>
<tr>
<td>CCC</td>
<td>Commodity Credit Corporation</td>
</tr>
<tr>
<td>CME</td>
<td>Chicago Mercantile Exchange</td>
</tr>
<tr>
<td>CSS</td>
<td>Certified Semen Services</td>
</tr>
<tr>
<td>DCHA</td>
<td>Dairy Calf and Heifer Association</td>
</tr>
<tr>
<td>DCRC</td>
<td>Dairy Cattle Reproductive Council</td>
</tr>
<tr>
<td>DHIA</td>
<td>Dairy Herd Information Association</td>
</tr>
<tr>
<td>DHIR</td>
<td>Dairy Herd Information Registry</td>
</tr>
<tr>
<td>DRPC</td>
<td>Dairy Records Processing Center</td>
</tr>
<tr>
<td>DRINC</td>
<td>Dairy Research, Inc.</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>FASS</td>
<td>Federation of Animal Science Societies</td>
</tr>
<tr>
<td>FCS</td>
<td>Farm Credit Services</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>FSA</td>
<td>Farm Service Agency</td>
</tr>
<tr>
<td>FSIS</td>
<td>Food Safety and Inspection Service</td>
</tr>
<tr>
<td>IDF</td>
<td>International Dairy Federation</td>
</tr>
<tr>
<td>IDFA</td>
<td>International Dairy Foods Association</td>
</tr>
<tr>
<td>IMS</td>
<td>Interstate Milk Shippers</td>
</tr>
<tr>
<td>NAAB</td>
<td>National Association of Animal Breeders</td>
</tr>
<tr>
<td>NADC</td>
<td>National Animal Disease Center</td>
</tr>
<tr>
<td>NAIDC</td>
<td>North American Intercollegiate Dairy Challenge</td>
</tr>
<tr>
<td>NASS</td>
<td>National Agricultural Statistics Service</td>
</tr>
<tr>
<td>NCIMS</td>
<td>National Conference on Interstate Milk Shipments</td>
</tr>
<tr>
<td>NDC</td>
<td>National Dairy Council</td>
</tr>
</tbody>
</table>
DAIRY INDUSTRY LEADERS

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jim Mulhern</td>
<td>President and CEO, National Milk Producers Federation</td>
</tr>
<tr>
<td>Corey Geiger</td>
<td>Managing Editor, Hoard’s Dairyman</td>
</tr>
<tr>
<td>Jay Mattison</td>
<td>CEO and Administrator, National DHIA</td>
</tr>
<tr>
<td>Jim Dickrell</td>
<td>Editor, Dairy Herd Management</td>
</tr>
<tr>
<td>David Selner</td>
<td>Executive Director, National Dairy Shrine</td>
</tr>
</tbody>
</table>

BREED ASSOCIATION LEADERS

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Becky Payne</td>
<td>Executive Director, Ayrshire Breeders Association</td>
</tr>
<tr>
<td>David Wallace</td>
<td>Executive Secretary, Brown Swiss Cattle Breeders Association</td>
</tr>
<tr>
<td>Douglas Granitz</td>
<td>CEO & Executive Secretary, American Guernsey Association</td>
</tr>
<tr>
<td>John Meyer</td>
<td>CEO/Executive Secretary, Holstein Association USA, Inc.</td>
</tr>
<tr>
<td>Neal Smith</td>
<td>Executive Secretary and CEO, American Jersey Cattle Association</td>
</tr>
<tr>
<td>Junia Isiminger</td>
<td>Executive Secretary, American Milking Shorthorn Society</td>
</tr>
<tr>
<td>Mandy Sell</td>
<td>Promotions Manager, Red & White Dairy Cattle Association</td>
</tr>
</tbody>
</table>
The mission of National All-Jersey, Inc. is to increase the value of and demand for Jersey milk and to promote equity in milk pricing.

The Holstein Foundation’s education leadership development and outreach programs serve youth and young adults representing all breeds of dairy cattle.

The Council on Dairy Cattle Breeding oversees approval of records systems standards. The council appoints the group to certify performance of DHI’s and other herd record providers.

The four Dairy Records Processing Centers (DRPC’s) in the U.S. are:
- Agritech Analytics
- AgSource Cooperative Services
- DHI-Provo
- Dairy Records Management Systems

Dairy Farmers of America (DFA) is the largest dairy cooperative in the U.S.

Nestlé USA is the largest processor and distributor of milk and dairy products in the U.S.

Nestlé of Switzerland is the top dairy company in the world based on dairy sales.

Danone is the world’s largest yogurt maker.

The New Zealand Dairy Board is the world’s largest private exporter of dairy products.

Items traded at the Chicago Mercantile Exchange daily are:
- Block and barrel cheese (cash)
- Butter futures
- Class III and Class IV milk futures and options

Dairy Management, Inc. (DMI) is a nonprofit organization formed by the National Dairy Board and United Dairy Industry Association. It conducts programs in integrated marketing, communications, promotion, and research for U.S. dairy farmers. Organizations under the DMI umbrella are:
- American Dairy Association
- National Dairy Council
- U.S. Dairy Export Council

The American Dairy Science Association (ADSA) is an international organization of educators, scientists, and industry representatives who are committed to advancing the dairy industry. The Journal of Dairy Science is the organization’s official scientific publication. ADSA has two divisions in its organizational structure – Dairy Foods and Dairy Production.

The National Dairy Shrine Museum is located in Fort Atkinson, Wisconsin.
<table>
<thead>
<tr>
<th>Organization Headquarter</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Dairy Science Association</td>
<td>Champaign, Illinois</td>
</tr>
<tr>
<td>Council on Dairy Cattle Breeding</td>
<td>Bowie, Maryland</td>
</tr>
<tr>
<td>Dairy Calf and Heifer Association</td>
<td>Madison, Wisconsin</td>
</tr>
<tr>
<td>Hoard's Dairyman</td>
<td>Fort Atkinson, Wisconsin</td>
</tr>
<tr>
<td>Milk and Dairy Beef Quality Assurance Center</td>
<td>Stratford, Iowa</td>
</tr>
<tr>
<td>National Dairy Shrine</td>
<td>Denmark, Wisconsin</td>
</tr>
<tr>
<td>National DHIA</td>
<td>Verona, Wisconsin</td>
</tr>
<tr>
<td>National Milk Producers Federation</td>
<td>Arlington, Virginia</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Event Locations</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>All-American Dairy Show</td>
<td>Harrisburg, Pennsylvania</td>
</tr>
<tr>
<td>Eastern States Exposition (The Big E)</td>
<td>West Springfield, Massachusetts</td>
</tr>
<tr>
<td>National 4-H Dairy Conference</td>
<td>Madison, Wisconsin</td>
</tr>
<tr>
<td>North American International Livestock Exposition</td>
<td>Louisville, Kentucky</td>
</tr>
<tr>
<td>World Dairy Expo</td>
<td>Madison, Wisconsin</td>
</tr>
</tbody>
</table>
Chapter 3: Dairy Breeds

<table>
<thead>
<tr>
<th>Breed</th>
<th>Origin</th>
<th>Arrived in U.S.</th>
<th>Mature Bodyweight</th>
<th>Method of Permanent ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ayrshire</td>
<td>County of Ayr, Scotland</td>
<td>1822</td>
<td>1,200 lb.</td>
<td>Photo or sketch</td>
</tr>
<tr>
<td>Brown Swiss</td>
<td>Switzerland</td>
<td>1869</td>
<td>1,400 lb.</td>
<td>Ear tattoo</td>
</tr>
<tr>
<td>Guernsey</td>
<td>Isle of Guernsey</td>
<td>1831</td>
<td>1,250 lb.</td>
<td>Photo, sketch, ear tattoo</td>
</tr>
<tr>
<td>Holstein</td>
<td>Netherlands & Germany</td>
<td>1852</td>
<td>1,400 lb.</td>
<td>Photo or sketch</td>
</tr>
<tr>
<td>Jersey</td>
<td>Isle of Jersey</td>
<td>1815</td>
<td>1,000 lb.</td>
<td>Eartag or tattoo</td>
</tr>
<tr>
<td>Milking Shorthorn</td>
<td>England</td>
<td>1846</td>
<td>1,400 lb.</td>
<td>Ear tattoo</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Breed</th>
<th>Association Name & Headquarters</th>
<th>Magazine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ayrshire</td>
<td>Ayrshire Breeders Association Columbus, Ohio</td>
<td>Ayrshire Digest</td>
</tr>
<tr>
<td>Brown Swiss</td>
<td>Brown Swiss Cattle Breeders Association Beloit, Wisconsin</td>
<td>Brown Swiss Bulletin</td>
</tr>
<tr>
<td>Guernsey</td>
<td>American Guernsey Association Columbus, Ohio</td>
<td>Guernsey Breeders’ Journal</td>
</tr>
<tr>
<td>Holstein</td>
<td>Holstein Association USA, Inc. Brattleboro, Vermont</td>
<td>Holstein Pulse</td>
</tr>
<tr>
<td>Jersey</td>
<td>American Jersey Cattle Association Reynoldsburg, Ohio</td>
<td>Jersey Journal</td>
</tr>
<tr>
<td>Milking Shorthorn</td>
<td>American Milking Shorthorn Association Beloit, Wisconsin</td>
<td>Milking Shorthorn Journal</td>
</tr>
<tr>
<td>Red and White</td>
<td>Red and White Dairy Cattle Association Madison, Wisconsin</td>
<td>The Red Bloodlines</td>
</tr>
</tbody>
</table>
MISCELLANEOUS BREED INFORMATION

Brown Swiss cattle were originally used for milk, meat and draft purposes. Today’s Brown Swiss cattle are known for:
- High protein to fat ratio
- Longevity
- Sound feet and legs
- Having few health problems

Guernsey milk is known for its golden color.

Holsteins make up about 90% of the U.S. dairy cow population.

The three **colors found in registered Holstein cattle** are black, red, and white.

On average, **Holsteins** produce the most milk per cow.

Jerseys generally produce milk with the highest fat and protein content.

The **Red and White Dairy Cattle Association** has an open herdbook with different levels of registry. The organization allows different breeds in their herdbook, not just red and white Holsteins.

NOTABLE ANIMALS

World production leaders by breed

<table>
<thead>
<tr>
<th>Breed</th>
<th>Milker/Producer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown Swiss</td>
<td>Lost Elm Prelude Pixy ET (65,430 lb.)</td>
</tr>
<tr>
<td>Holstein</td>
<td>Ever-Green-View My Gold-ET (77,480 lb.)</td>
</tr>
<tr>
<td>Jersey</td>
<td>Mainstream Barkly Jubilee (55,590 lb.)</td>
</tr>
</tbody>
</table>

World lifetime milk production record holder

<table>
<thead>
<tr>
<th>Breeder Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gillette E Smurf</td>
</tr>
<tr>
<td>Jane of Vernon</td>
</tr>
</tbody>
</table>

First bull to produce one million units of semen

<table>
<thead>
<tr>
<th>Breeder Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fisher-Place Mandingo-TW</td>
</tr>
</tbody>
</table>

DAIRY GOATS

Capriculture is the study of goats and goat husbandry.

Breeds of dairy goats

- Alpine
- Nigerian Dwarf
- Oberhasli
- Sable
- La Mancha
- Nubian
- Saanen
- Toggenburg

The **American Dairy Goat Association** is third in total dairy animals registered annually in the United States, following the Holstein and Jersey organizations.
Chapter 4: Dairy Cattle Judging, Fitting and Showing

PDCA DAIRY COW UNIFIED SCORECARD

<table>
<thead>
<tr>
<th>Category</th>
<th>Points</th>
<th>Traits in Priority Order</th>
<th>Points in Priority Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame</td>
<td>15</td>
<td>- Rump (5)</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Front end (5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Back/loin (2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Stature (2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Breed characteristics (1)</td>
<td></td>
</tr>
<tr>
<td>Dairy Strength</td>
<td>25</td>
<td>- Ribs (8)</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Chest (6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Barrel (4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Thighs (2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Neck (2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Withers (2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Skin (1)</td>
<td></td>
</tr>
<tr>
<td>Rear Feet and Legs</td>
<td>20</td>
<td>- Movement (5)</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Rear legs – side view (3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Rear legs – rear view (3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Feet (3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Thurl position (2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Hocks (2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Bone (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Pasterns (1)</td>
<td></td>
</tr>
<tr>
<td>Udder</td>
<td>40</td>
<td>- Udder depth (10)</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Rear udder (9)*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Teat placement (5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Udder cleft (5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Fore udder (5)*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Teats (3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Udder balance and texture (3)</td>
<td></td>
</tr>
</tbody>
</table>

In Holsteins, fore & rear udder are weighted equally at 7 points each.

DAIRY HEIFER SCORECARD (Unofficial)

<table>
<thead>
<tr>
<th>Category</th>
<th>Points</th>
<th>Points in Priority Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Dairy Strength</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Feet and Legs</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Body Capacity</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

FINAL CLASSIFICATION SCORES

<table>
<thead>
<tr>
<th>Brown Swiss</th>
<th>Holstein</th>
<th>Jersey</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent........</td>
<td>.90-94</td>
<td>Excellent...</td>
</tr>
<tr>
<td>Very Good........</td>
<td>.85-89</td>
<td>Very Good...</td>
</tr>
<tr>
<td>Good Plus........</td>
<td>.80-84</td>
<td>Good Plus...</td>
</tr>
<tr>
<td>Good.............</td>
<td>.75-79</td>
<td>Good.........</td>
</tr>
<tr>
<td>Fair.............</td>
<td>.65-74</td>
<td>Fair.........</td>
</tr>
<tr>
<td>Poor...............</td>
<td>.60-64</td>
<td>Poor.........</td>
</tr>
</tbody>
</table>

2017 Virginia 4-H Dairy Quiz Bowl Study Materials
ANATOMY RELATED TO JUDGING

The **hock** is used as the reference point to determine the height of the udder floor.
The parts of a cow’s anatomy that may be twisted to one side and called “**wry**” are the **face** and **tail**.
The **main udder supports** are the median suspensory ligament, lateral suspensory ligament, and skin.
The **median suspensory ligament** is the major support of the udder and divides it in half when viewed from the rear.
The **subcutaneous abdominal veins** are also called the milk veins.

SHOWMANSHIP

When **exhibiting a dairy animal**, the parading circle before the judge should move clockwise.
When **showing a dairy heifer**, the rear leg nearest the judge should be placed farther back than the other.
When **showing a dairy cow**, the rear leg nearest the judge should be placed farther forward than the other.
One should **lead a dairy animal** from the left side of the animal when viewed from the rear.

SHOW ETHICS

A dairy animal can be **disqualified** from being shown in the show ring for the following reasons:
- Blind quarter
- Permanent lameness
- Total blindness
- Freemartin heifer
- Tampering to conceal faults

Ohio was the first state to make tampering with show cows a crime.

PDCA SHOWMANSHIP EVALUATION CARD

SLIGHT DISCRIMINATIONS

Exhibitor
- Inappropriate halter
- Lead strap tightly looped
- Walks slowly backward into the ring
- Sidesteps when leading calf
- Has stiff outstretched arm
- Has poor posture – either overly stiff or slumped, sloppy
- Improper head carriage, animal’s nose is too high
- Calf’s head is not turned slightly toward judge when hide is felt
- Stepping on or kicking at the animal’s front feet
- Inappropriate size of calf for competitor

Animal
- Minor instances of animal not handled well
- Is not alert
- Muzzle is not wiped clean
- Switch is not brushed and fluffed
- Clipping lines not properly blended
MODERATE DISCRIMINATIONS

Exhibitor
- Not wearing white clothing or show-approved professional attire
- Inappropriate or unprofessional attire that draws attention to the exhibitor
- Wearing clothing with farm or commercial advertising/logos
- Does not know birth date, fresh date, breeding date, due date
- Unable to recognize type faults of the animal
- Halter not fitting or put together properly
- Holding the lead strap too far from the halter
- Has fingers in ring of the halter
- Failure to hold throat when needed
- Improper head carriage, animal's head held too low
- Unable to show animal to best advantage
- Slow response to judge or ring official
- Inattentiveness
- Watching the judge too intently
- Over-showing
- Leading too slowly
- Has elbow or hands up
- Is too far to outside or inside of ring
- Incorrect spacing to the animal in front when on parade
- Failure to switch rear legs when the judge moves around the animal
- Doesn't walk quickly into line
- Crowding or bumping other animals when pulled in line
- Leaving extra space in line
- Failure to maintain a straight lineup
- Moves excessively in line
- Unable to back up animal
- Legs incorrectly posed
- Does not keep animal straight from head to tail
- Chewing gum

Animal
- Legs not clipped
- Dirt/dust in hair coat
- Dirt/wax in ears
- Feet not cleaned
- Excessive use of hair sprays, powder and other fitting products
- Clipping too early; hair appears too long
- Incomplete clipping
- Excessive clipping
SERIOUS DISCRIMINATIONS

Exhibitor
- Lead strap looped & fastened
- Striking the animal
- Positioning animal’s rear legs by stepping on rear feet
- Fusses with or moves calf to the extreme
- Minor instances of unsportsmanlike conduct
- Is late to class
- Wearing inappropriate shoes
- Chewing tobacco
- Carries or talks on a cell phone

Animal
- Animal causing disturbances to others

DISQUALIFICATIONS
- Violations of PDCA Show Ring Code of Ethics
- Unsportsmanlike conduct
- Repeated striking of the animal

RECOMMENDATION FOR THE EVALUATION OF THE TOPLINE
Topline is groomed, doesn’t distract from the animal's overall appearance, conforms to the guidelines of the PDCA Showring Code of Ethics

<table>
<thead>
<tr>
<th>HEIFER CLASSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>The individual heifer classes in a dairy show are:</td>
</tr>
<tr>
<td>Spring heifer calf</td>
</tr>
<tr>
<td>Summer yearling heifer</td>
</tr>
<tr>
<td>Fall yearling heifer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>JUDGING CONTESTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Hoard's Dairyman Cow Judging Contest consists of 5 picture classes. The contest begins with the January 10 issue each year.</td>
</tr>
<tr>
<td>The National 4-H Dairy Cattle Judging Contest is held at the World Dairy Expo in Madison, Wisconsin.</td>
</tr>
<tr>
<td>There are four animals in a class in a 4-H dairy judging contest.</td>
</tr>
<tr>
<td>The All-American Invitational Youth Dairy Cattle Judging Contest is held at the All-American Dairy Show in Harrisburg, Pennsylvania.</td>
</tr>
<tr>
<td>The (NAILE) Invitational Youth Dairy Judging Contest is held at the North American International Livestock Exposition in Louisville, Kentucky.</td>
</tr>
</tbody>
</table>
Chapter 5: Calf and Heifer Management

ACRONYMS

| ADG | Average daily gain |
| AFC | Age at first calving |

ECONOMICS

Heifers account for 15 to 20 percent of total farm expenses on many dairy operations. Feed costs account for 55 to 60 percent of the total cost of raising dairy replacement heifers.

PROJECT SELECTION

Important points to consider when selecting a calf as a project animal include:
- Age
- Breed
- Health
- Pedigree
- Conformation

IDENTIFICATION

Methods commonly used to identify calves include:
- Eartag
- Photo
- Sketch
- Tattoo
- Freeze branding

LIQUID DIET

Liquid diet choices for pre-weaned calves include milk replacer, whole milk, and colostrum. A pre-weaned calf should be fed 10-17 percent of its body weight in milk or milk replacer daily.

When a calf nurses, milk travels through the esophageal groove to the omasum and abomasum. It bypasses the rumen and reticulum. In a newborn calf, the reticulum and rumen are not yet fully developed.

COLOSTRUM

Colostrum is milk that is secreted during the first two to three days after calving. Colostrum contains antibodies that provide immunity from disease for calves. It contains a higher level of protein than normal milk.

A newborn calf should be fed colostrum for the first three days of life. If colostrum is pasteurized, it should be heated to 140°F for 60 minutes.

The critical factors in colostrum management are quantity, quality, timing, and cleanliness.

Storage options for excess colostrum are:
- Add preservative acid
- Fermented
- Frozen
- Refrigerated

Frozen colostrum may be safely stored for a year.

The Brix refractometer and colostrometer are on-farm tools for estimating colostrum quality.

Conditions that can result in poor quality colostrum include:
- Cows is dry less than 3-4 weeks
- Pre-milking
- Leaking teats
- Dirty udder and teats
- Young cow
MILK REPLACER

Conventional milk replacer should contain 20% crude protein and 20% fat.

Accelerated milk replacer should contain 26-30% crude protein and 15-25% fat.

Recommended protein sources for milk replacers are:
- Casein
- Dried skim milk
- Dried whey
- Dried whey product
- Dried whey protein concentrate
- Modified wheat protein
- Protein modified soy flour
- Soy protein concentrate
- Soy protein isolate

WEANING

Weaning is the act of taking a young animal off of milk as the main source of nutrition.

Grain intake should be the main criterion used for deciding when to wean a calf.

Before weaning a calf should eat at least **2-3 pounds of grain per day for three consecutive days**.

Calf starter should contain 18-22% crude protein.

There are several types of calf starters available. They are:
- Commercial textured calf starters
- Commercial pelleted starters
- Homemade grind and mix starters

Calf housing should be clean, dry, draft-free and well ventilated.

Warm calf housing is housing in which environmental temperature is controlled.

The temperature in cold calf housing varies with the outside temperature.

Systems of calf housing include:
- Calf hutch
- Elevated stalls
- Pens on the floor
- Counter-slope system
- Cold calf housing system

Advantages of calf hutches include:
- They are easily moved
- They provide better ventilation
- They prevent disease from spreading from one calf to another

GROWTH

Calves should at least double their birth weight by 8 weeks of age.

Average daily gain (ADG) is a significant factor in monitoring growth rates in dairy heifers.

Body size is the most important factor to consider in determining when to breed a heifer for the first time.

Heifers usually **show heats** at 40% of mature bodyweight. They should start being **bred** at 55% of mature bodyweight and **calve** for the first time at approximately 82% of mature bodyweight.

Compensatory growth is a term used to describe a period of increased growth rate that follows a growth restriction imposed earlier in the heifer’s life.
Calf Health

The leading causes of death in young calves are scours and pneumonia. The major causes of calf scours include:

- Inadequate colostrum
- Overfeeding
- Poor quality colostrum
- Poor quality milk replacer
- Overcrowding
- Unsanitary calving conditions

Physical factors contributing to pneumonia in calves are drafts, chilling, dampness, and poor ventilation.

Places where pathogenic organisms may gain entry into a newborn calf’s body are the mouth, navel, and nose.

Signs of illnesses in calves include:

- Poor appetite
- Nasal discharge
- Lack of energy
- Cough
- Drooping ears
- Elevated temperature
- Watery manure
- Dull eyes

A 7% iodine solution should be painted on the calf’s navel soon after birth to seal the entrance from disease causing organisms.

A calf is 2 to 3 weeks old when it begins to chew its cud. Calves should be dehorned at about three weeks of age.

Methods of dehorning calves are paste (caustic potash), cut or gouge (Barnes type dehorner), and electric.

Extra teats are also known as supernumerary teats. Between 30 and 40 percent of heifers born have extra teats. They should be surgically removed around 4 months of age.

Custom Heifer Rearing

Custom heifer growing offers several advantages to dairy producers who have been raising their own replacements including:

- Decreased labor requirement
- Increased milking herd management
- Increased facility capacity for milking cows
- Herd expansion without capital investment with use of existing facilities
- Increased feed inventory for milking cows
- Potential for better replacement heifers

Major elements associated with a contract for raising dairy replacements are:

- Time period
- Amendments, renegotiations, and renewal
- Billing and payment procedures
- Conditions for termination of agreement
- Definition of each party’s responsibility

Methods of charging for heifer grower services include:

- Per animal per day
- Per pound of gain
- Option to purchase
- Per animal
- Feed plus yardage
Chapter 6: Nutrition, Feeds and Feeding

ACRONYMS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>Amino acid</td>
</tr>
<tr>
<td>ADF</td>
<td>Acid detergent fiber</td>
</tr>
<tr>
<td>ADIN</td>
<td>Acid detergent insoluble nitrogen</td>
</tr>
<tr>
<td>ADP</td>
<td>Adenosine diphosphate</td>
</tr>
<tr>
<td>AMP</td>
<td>Adenosine monophosphate</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>BCS</td>
<td>Body condition score</td>
</tr>
<tr>
<td>BHBA</td>
<td>Beta hydroxybutyrate</td>
</tr>
<tr>
<td>BUN</td>
<td>Blood urea nitrogen</td>
</tr>
<tr>
<td>CF</td>
<td>Crude fiber</td>
</tr>
<tr>
<td>CP</td>
<td>Crude protein</td>
</tr>
<tr>
<td>DCAD</td>
<td>Dietary cation-anion difference</td>
</tr>
<tr>
<td>DE</td>
<td>Digestible energy</td>
</tr>
<tr>
<td>DM</td>
<td>Dry matter</td>
</tr>
<tr>
<td>DMI</td>
<td>Dry matter intake</td>
</tr>
<tr>
<td>FFA</td>
<td>Free fatty acid</td>
</tr>
<tr>
<td>ME</td>
<td>Metabolizable energy</td>
</tr>
<tr>
<td>MUN</td>
<td>Milk urea nitrogen</td>
</tr>
<tr>
<td>NDF</td>
<td>Neutral detergent fiber</td>
</tr>
<tr>
<td>NDIN</td>
<td>Neutral detergent insoluble nitrogen</td>
</tr>
<tr>
<td>NE</td>
<td>Net energy</td>
</tr>
<tr>
<td>NEL</td>
<td>Net energy for lactation</td>
</tr>
<tr>
<td>NEFA</td>
<td>Non-esterified fatty acid</td>
</tr>
<tr>
<td>NFC</td>
<td>Nonfiber carbohydrates</td>
</tr>
<tr>
<td>NIR</td>
<td>Near-infrared reflectance</td>
</tr>
<tr>
<td>NPN</td>
<td>Nonprotein nitrogen</td>
</tr>
<tr>
<td>NSC</td>
<td>Nonstructural carbohydrates</td>
</tr>
<tr>
<td>PUN</td>
<td>Plasma urea nitrogen</td>
</tr>
<tr>
<td>RDP</td>
<td>Rumen-degradable protein</td>
</tr>
<tr>
<td>RFQ</td>
<td>Relative forage quality</td>
</tr>
</tbody>
</table>

DEFINITIONS

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mastication</td>
<td>Chewing</td>
</tr>
<tr>
<td>Cud</td>
<td>Feed that a cow has regurgitated and is being re-chewed</td>
</tr>
<tr>
<td>Esophagus</td>
<td>Tube that connects the mouth to the rumen</td>
</tr>
<tr>
<td>Saliva</td>
<td>Watery substance formed in the mouths of animals, secreted by the salivary glands</td>
</tr>
<tr>
<td>Rumination</td>
<td>Process in ruminants when semi-liquid ingested feed is regurgitated into the esophagus, re-chewed, and re-swallowed for further digestion</td>
</tr>
<tr>
<td>Eructation</td>
<td>Belching of gas by ruminant animals as a natural way for releasing gases produced during the fermentation process</td>
</tr>
<tr>
<td>Papillae</td>
<td>Tiny, finger-like projections that line the wall of the rumen</td>
</tr>
<tr>
<td>Villi</td>
<td>Small projections that line the small intestine wall</td>
</tr>
<tr>
<td>Chyme</td>
<td>Feed material found in the small intestine</td>
</tr>
<tr>
<td>Nutrient</td>
<td>Any chemical substance that provides nourishment to the body</td>
</tr>
<tr>
<td>Digestible energy</td>
<td>The total energy in a feedstuff minus the energy lost in feces</td>
</tr>
<tr>
<td>Metabolizable energy</td>
<td>Digestible energy minus the energy lost in urine and gas</td>
</tr>
<tr>
<td>Net energy</td>
<td>Actual amount of energy the body can use for growth, lactation, reproduction, and body maintenance</td>
</tr>
<tr>
<td>Crude protein</td>
<td>Total protein in a feed</td>
</tr>
</tbody>
</table>
SALIVA

Saliva is the major buffer for maintaining optimum rumen pH. The mature dairy cow produces 50 to 80 quarts of saliva per day.

The functions of saliva are to:

- Moist food
- Lubricate food
- Act as a buffer
- Provide fluid base for many nutrients
- Provide the proper environment for bacterial growth

RUMINANT

The dairy cow is a ruminant, meaning it has a four-compartment stomach.

The stomach compartments are the reticulum, rumen, omasum, and abomasum.
The reticulum is also known as the **honeycomb**. The reticulum is the stomach compartment located closest to the heart. Hardware disease occurs in the reticulum.

The rumen is also known as the **fermentation vat**. The rumen is the largest of the cow's stomach compartments. It makes up 25% of the newborn calf's stomach capacity and 80% of the mature cow's stomach capacity. Fermentation is the primary process that takes place in the rumen. Bacteria, fungi, and protozoa are types of organisms that live in the rumen and digest feed. Carbon dioxide and methane are gases produced in the rumen. The ideal rumen pH is 5.9 to 6.2. The rumen is acidotic when rumen pH drops below 5.9.

The omasum is also called **manyplies**. The main function of the omasum is the dehydration of partially digested feed.

The abomasum is the enzyme and acid secreting portion of the ruminant stomach. The abomasum is also called the **true stomach**. The primary acid found in the abomasum is hydrochloric acid.

The segments of the small intestine are the duodenum, jejunum and ileum. Fats are broken down in the small intestine. The liver is the first organ to receive blood from the small intestine. The pancreas secretes digestive enzymes into the small intestine.

The main functions of the large intestine are water absorption and storage of waste materials.

The main processes for which a cow uses nutrients from her feed are maintenance, growth, production and reproduction. The nutrients contained in feedstuffs are carbohydrates, fats, protein, minerals, vitamins, and water.

Major sources of energy for the dairy cow are fats and carbohydrates. Energy is most likely to be the limiting nutritional requirement for the high producing dairy cow. A calorie is a unit of measure of energy in a feed; it is the amount of energy required to raise 1 gram of water 1°C.
FATS

Fats are the **most concentrated energy source** in dairy cattle rations. They contain **2.25 times the energy value of starch**.

The recommended **maximum level** of fat in a lactating cow's ration is 5 to 7% of ration dry matter.

The **forms of fat** used in dairy cattle rations include animal fats (tallow), protected fats (calcium soaps), and whole oil seeds (whole cottonseeds, whole soybeans).

Fatty acids are the building blocks of fats and lipids.

Saturated fatty acids are completely hydrogenated; each carbon atom is associated with the maximum number of hydrogen atoms. They have no double bonds.

Unsaturated fatty acids are not completely hydrogenated. They have one or more double bonds.

Whole oil seeds contain high levels of unsaturated fatty acids.

CARBOHYDRATES

The **basic elements** contained in carbohydrates are **carbon, hydrogen, and oxygen**.

Cellulose and hemicellulose are **structural carbohydrates** that the cow can use as a source of energy.

Starch, sugar, and pectin are **nonstructural carbohydrates** that are highly digestible parts of feeds.

VOLATILE FATTY ACIDS

Volatile fatty acids are the main products of carbohydrate digestion by rumen microorganisms.

The **main volatile fatty acids** produced in the rumen are acetic acid (acetate), butyric acid (butyrate), and propionic acid (propionate).

Acetic acid is the primary source of **energy** and **milkfat**.

Propionic acid is a precursor for glucose; it is produced from digestion of starch and grain.

PROTEIN

The **basic elements** that are present in all proteins are **carbon, hydrogen, oxygen, and nitrogen**.

Most proteins contain **16% nitrogen**.

To **determine the crude protein content** of a feed, multiply the nitrogen fraction by 6.25.

If a farmer said he was feeding a **16% dairy feed**, the 16% is referring to crude protein.

Proteins derived from poultry, marine or vegetable sources may be used in ruminant rations.

Proteins derived from ruminant sources may not be used in ruminant rations because of concerns about Mad Cow Disease.

AMINO ACIDS

There are **20 standard amino acids**.

The cow's **sources of amino acids** are rumen undegradable protein and rumen microbes.

Amino acids are classified as **essential or nonessential**.

Essential amino acids must be provided in the diet. The **ten essential amino acids** for milking cows are:

- Arginine
- Histidine
- Isoleucine
- Leucine
- Lysine
- Methionine
- Phenylalanine
- Threonine
- Tryptophan
- Valine
The **most limiting amino acids** in dairy cattle nutrition are **lysine** and **methionine**. **Nonessential amino acids** are produced by the cow and do not have to be provided in the diet.

MINERALS

Macrominerals are generally required in **relatively large quantities**. Requirements are usually stated as a **percent of ration dry matter**. The macrominerals are:

- Calcium
- Magnesium
- Potassium
- Sulfur
- Chlorine
- Phosphorus
- Sodium

Potassium is the mineral needed by the dairy cow in the largest quantity.

Microminerals (trace minerals) are required in **relatively small quantities**. Requirements are usually stated in **parts per million (ppm)**. The microminerals are:

- Cobalt
- Iodine
- Manganese
- Zinc
- Copper
- Iron
- Selenium

VITAMINS

Vitamins are classified as either **fat-soluble** or **water-soluble**.

The **fat-soluble vitamins** are **Vitamin A**, **Vitamin D**, **Vitamin E**, and **Vitamin K**. **Beta-carotene**, found in most legumes and grasses, is a precursor of Vitamin A.

Vitamin E has functions similar to selenium.

Vitamin K plays a role in the coagulation of blood.

The **water-soluble vitamins** are the **B complex vitamins** and **Vitamin C**.

The **B Complex vitamins** are:

- Thiamine (B1)
- Niacin (B3)
- Biotin (B7)
- Choline
- Riboflavin (B2)
- Pantothenic Acid (B5)
- Folic Acid (B9)
- B12

Vitamin C is also known as ascorbic acid.

Vitamins are measured in **International Units (IU)**.

WATER

An average dairy cow drinks **30 to 50 gallons** of water each day.

Performance (growth or milk production) will be reduced the quickest through a lack of water as compared to other nutrients.

A dairy cow **excretes or loses water** through breathing, **feces**, **milk**, **sweat**, and **urine**.

Factors influencing the amount of water consumed by dairy cattle include:

- Body size
- Water quality
- Environmental temperature
- Relative humidity
- Diet
- Milk production
- Water temperature

Peak times for water consumption are as soon as cows leave the milking parlor and when cows consume large amounts of dry matter (at feeding).

Physiological functions of water in the body include:

- A medium to transport nutrients
- Functions as a universal solvent
- Serves as a fluid to lubricate joints
- Serves as a fluid base for milk
- To carry waste products to the point of excretion
- To cool the body at high environmental temperatures
- Serves as a substrate for metabolic reactions

2017 Virginia 4-H Dairy Quiz Bowl Study Materials
NUTRIENT REQUIREMENTS

Many factors are required to determine nutrient requirements of a lactating cow including:
- Body weight
- Fat test
- Age
- Stage of lactation
- Body condition
- Milk production level
- Environmental temperature
- Reproductive status

LEGUMES

Legumes used in dairy rations include:
- Alfalfa
- Clover
- Peanuts
- Soybeans
- Bird’s Foot Trefoil
- Lespedeza
- Peas
- Vetch

Nitrogen fixing bacteria are associated with legumes.
Phosphorus is critical for the establishment of legumes.

HAY

Immature hay is more valuable as a feed for dairy cows than mature hay because of:
- Higher nutrient content
- Greater palatability
- Higher digestibility
- Lower fiber

Relative feed value (RFV) combines digestibility and intake estimates into one number for an easy and effective way to identify and market quality hay. RFV is expressed as a percent compared to full bloom alfalfa at 100 percent RFV.

SILAGE

Phases of silage fermentation are aerobic, anaerobic, stable, and feeding.

Types of silage storage facilities include:
- Bunker silo
- Upright/tower silo
- Oxygen limiting silo
- Trench silo
- Plastic bag

The minimum recommended feeding rate from an upright silo is 2-4 inches per day in the winter and 4-6 inches per day in the summer. It is at least 6 inches per day for bunker silos.

Plastic is generally considered the best material for covering a bunker silo.

Even distribution of silage within the silo to exclude air is an important part of making good quality silage.

Valuable nutrients that can be lost in seepage from a silo are minerals, organic acids, protein, and soluble sugars.

Lactic acid is the most desirable acid produced during ensiling. Butyric acid is an undesirable acid.

Heat damage in haylage is indicated by dark color and burnt odor.

CORN SILAGE

Corn silage has the best fermentation and preservation characteristics with minimal seepage when harvested at 35% dry matter.

The desired pH or properly fermented corn silage is 4.0 or less.

Cold flow ammonia may be added to corn silage to increase the crude protein content.
Kernel processing of corn silage increases starch digestibility.
The recommended **theoretical length of cut (TLC)** for corn silage harvested with a conventional harvester is \(\frac{3}{8} \) inch. If harvested with a harvester fitted with a kernel processor, TLC should be \(\frac{3}{4} \) inch. Characteristics of corn that have been introduced through **transgenics** include:

- Corn borer resistance
- Herbicide resistance
- High oil content
- Waxy corn

Bt corn hybrids were genetically engineered to provide resistance to the European corn borer. **Brown midrib corn varieties** have lower lignin concentrations, which increase fiber digestibility.

FORAGE TESTING

Forage testing is the most reliable way of knowing the nutrient content of forages. Forage testing **methods** include **NIR** and **wet chemistry**.

A **forage analysis report** commonly contains:

- Dry matter
- Crude protein
- Soluble protein
- Total digestible nutrients
- Net energy lactation
- Acid detergent fiber
- Neutral detergent fiber
- Ash (mineral matter)

When **sampling square bales of hay** for forage testing, 20 bales should be sampled.

A **dry matter** determination may be done quickly and easily on a forage sample at home using a **microwave oven**, **gram scale**, **paper plate** and **water glass**.

FIBER

Fiber is needed in dairy cattle rations to:

- Maximize dry matter and energy intakes
- Maintain normal rumen function
- Protect against post-calving difficulties

Digestibility of plant fiber decreases as the plant increases in age and/or in hot weather.

Acid detergent fiber (ADF) consists of **cellulose**, **lignin**, and **lignified nitrogen components** (heat damaged protein).

The **acid detergent fiber** content of a high producing cow’s ration should be 18-21%.

Neutral detergent fiber (NDF) is used to predict feed intake. The compounds that make up neutral detergent fiber (NDF) are **cellulose**, **hemicellulose**, and **lignin**.

FORAGE PARTICLE SEPARATOR

A **forage particle separator** can be used to:

- Evaluate whether there is enough long fiber in the ration
- Check for over mixing and particle size reduction
- Develop baseline particle size information for comparison
- Check ration uniformity
- Determine optimum mixing order
- Evaluate whether particle size changes with hay quality
- Check for sorting
MINERAL SUPPLEMENTS

Common **mineral supplements** include:
- Dicalcium phosphate
- Magnesium oxide
- Potassium chloride
- Limestone
- Monocalcium phosphate
- White salt

Limestone is an excellent source of calcium.

BUFFERS

Reasons one might add buffers to a dairy cow’s ration include:
- Increase fat test
- Aid in adjusting to high-energy ration
- Improve milk quality
- Improve digestibility
- Maintain acid-base balance
- Improve intake

Buffers commonly used in dairy rations include:
- Limestone (calcium carbonate)
- Sodium bentonite
- Magnesium oxide
- Sodium bicarbonate

DIETARY CATION-ANION DIFFERENCE

Dietary Cation-Anion Difference (DCAD) is a helpful tool to prevent milk fever.

The **elements** used to calculate DCAD are Sodium (+), Potassium (+), Chlorine (-), and Sulfur (-).

** Ionic salts** are used in pre-fresh cow rations to help prepare cows for the sudden demand for blood calcium. Examples are:
- Ammonium chloride
- Calcium chloride
- Magnesium chloride
- Ammonium sulfate
- Calcium sulfate
- Magnesium sulfate

IONOPHORES

Ionophores alter rumen fermentation by boosting the production of propionic acid and reducing the production of acetic acid. Examples are Lasalocid and Monensin. Monensin is approved for use in lactating dairy cattle, but Lasalocid is not.

BY-PRODUCT FEEDS

By-products can be successfully used as feed for dairy cattle. Before including a byproduct in the ration, the following factors should be considered:
- Nutrient composition
- Availability
- Storage
- Cost
- Palatability
- Consistency
- Ability to feed/use

By-product feedstuffs include:
- Cottonseed hulls
- Cottonseed meal
- Distillers grains
- Dried brewers grain
- Hominy feed
- Peanut meal
- Soybean hulls
- Soybean meal
- Wet brewers grain
- Wheat middlings
- Whole cottonseed
TOTAL MIXED RATION

Advantages of feeding a TMR include:
- Eliminate selective feeding
- Lower percent fiber needed in ration
- Consistent ration
- Easier to balance precisely
- High dry matter intake
- Fewer digestive upsets
- Free-choice mineral not needed
- Can feed a variety of by-products
- Higher milk production

GROUPING

When grouping the milking herd, several factors may be considered including:
- Body condition
- Production level
- Lactation number
- Reproductive status
- Stage of lactation
- Health

BODY CONDITION SCORING

Body condition scoring, based on a five-point scale, can be used to evaluate nutrition and health. A score of 1 is given to a very thin cow; a score of 5 is given to a very fat cow.

Targets for body condition scores at different stages of lactation are:
- At calving3.0-3.25
- Early lactation2.5
- Mid lactation2.75
- Late lactation3.0
- At drying off3.0-3.25

GRAZING

The most common reason that farm owners adopt grazing is cost reduction. The main costs cited for reduction are feed and labor.

Advantages of intensive rotational grazing include:
- Low input costs
- Even manure distribution
- Improved weed control
- Low labor requirement
- Reduced soil erosion

Disadvantages of grazing include:
- Inconsistent quality
- Unable to balance ration properly
- Distance from parlor
- Inconsistent quantity
- Lower forage yield per acre

MISCELLANEOUS

A mature dairy cow has 32 teeth, but has no upper front teeth.

Feed is the largest cost in milk production.

Molasses are often added to dairy cattle rations to improve taste (palatability) and reduce dustiness.

Raw soybeans will turn rancid if they are ground.

Peak milk production usually occurs 2-3 weeks before peak feed intake.

Milk urea nitrogen (MUN) shows how well nitrogen and fermentable carbohydrates are balanced in the ration.
ACRONYMS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BST</td>
<td>Bovine somatotropin</td>
</tr>
<tr>
<td>BTMC</td>
<td>Bulk tank milk culture</td>
</tr>
<tr>
<td>BTSCC</td>
<td>Bulk tank somatic cell count</td>
</tr>
<tr>
<td>CFM</td>
<td>Cubic feet per minute</td>
</tr>
<tr>
<td>CIP</td>
<td>Clean in place</td>
</tr>
<tr>
<td>CMT</td>
<td>California mastitis test</td>
</tr>
<tr>
<td>CNS</td>
<td>Coagulase-negative staphylococci</td>
</tr>
<tr>
<td>DMSCC</td>
<td>Direct microscopic somatic cell count</td>
</tr>
<tr>
<td>IGF</td>
<td>Insulin-like growth factor</td>
</tr>
<tr>
<td>IMI</td>
<td>Intramammary infection</td>
</tr>
<tr>
<td>rBST</td>
<td>Recombinant bovine somatotropin</td>
</tr>
<tr>
<td>SCC</td>
<td>Somatic cell count</td>
</tr>
<tr>
<td>SCS</td>
<td>Somatic cell score</td>
</tr>
<tr>
<td>WMT</td>
<td>Wisconsin mastitis test</td>
</tr>
</tbody>
</table>

DEFINITIONS

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alveoli</td>
<td>Spherical clusters of secretory cells in the mammary gland that are arranged in grape-like structures</td>
</tr>
<tr>
<td>Myoepithelium</td>
<td>Contractile tissue that forces milk out of the alveoli upon action of oxytocin</td>
</tr>
<tr>
<td>Keratin</td>
<td>Waxy substance produced by cells lining the teat canal that serves as a plug between milkings and aids in reducing penetration by microorganisms</td>
</tr>
<tr>
<td>Strutting</td>
<td>Condition in which the teats point out too much</td>
</tr>
<tr>
<td>Supernumerary teats</td>
<td>Extra teats</td>
</tr>
<tr>
<td>Lactation</td>
<td>Period of time when a cow is in milk</td>
</tr>
<tr>
<td>Liner slip</td>
<td>Condition whereby a teat cup slides down the surface of the teat, often accompanied by a squawk</td>
</tr>
<tr>
<td>Milkline</td>
<td>Line that carries milk and air during milking and has the dual function of providing milking vacuum and conveying milk to a receiver</td>
</tr>
<tr>
<td>Looped milkline</td>
<td>Milkline that forms an enclosed circuit with two full-bore connections to the receiver</td>
</tr>
<tr>
<td>Lowline (or low-level) milking system</td>
<td>System in which the milk inlet to the milkline or receiver jar is below the animal standing level</td>
</tr>
<tr>
<td>Washline</td>
<td>Line that carries cleaning and sanitizing solutions during the cleaning process from the wash sink, vat or tank to the milking units, milkline or milking vacuum line</td>
</tr>
<tr>
<td>Milk meter</td>
<td>Device between the cluster and the milkline for measuring all the milk from an individual animal</td>
</tr>
<tr>
<td>Sanitary trap</td>
<td>Vessel between the milk system and the air system to limit movement of liquids and other contaminants between the two systems</td>
</tr>
<tr>
<td>Pulsation</td>
<td>The cyclic opening and closing of a teat cup liner</td>
</tr>
<tr>
<td>Pulsator</td>
<td>The part of the milking system that causes the alternate vacuum pressure between the teat cup shell and liner</td>
</tr>
<tr>
<td>Alternating pulsation</td>
<td>When cyclic movement of the liners of two teat cups within a cluster alternates with the movement of the other two liners</td>
</tr>
<tr>
<td>Pulsation rate</td>
<td>The number of times per minute that the pulsator opens and closes</td>
</tr>
<tr>
<td>Pulsation ratio</td>
<td>The amount of time a pulsator creates vacuum to open the liner compared with the amount of time it admits air to collapse the liner</td>
</tr>
<tr>
<td>Vacuum pump</td>
<td>An air pump that produces vacuum in the milking system</td>
</tr>
<tr>
<td>Vacuum gauge</td>
<td>An instrument to indicate the level of vacuum in the system, relative to atmospheric pressure</td>
</tr>
<tr>
<td>Vacuum regulator (Vacuum controller)</td>
<td>The part of the milking system that prevents the vacuum level from exceeding a prescribed level</td>
</tr>
<tr>
<td>Bulk tank</td>
<td>Large storage tank for cooling and storing milk at a cold temperature until it is transported to a processing plant; usually made of stainless steel</td>
</tr>
<tr>
<td>Agitator</td>
<td>Stirs milk in the bulk tank to help with cooling and to provide a uniform product mixture for sampling</td>
</tr>
<tr>
<td>Sanitizer</td>
<td>Chemical solution used to kill bacteria on product contact surfaces</td>
</tr>
<tr>
<td>Backflushing</td>
<td>System for sanitizing teat cup liners between cow milkings</td>
</tr>
<tr>
<td>Clean-in-place (CIP)</td>
<td>Capability to clean and disinfect the milk-contact components of a milking system by circulating appropriate solutions through them without disassembly</td>
</tr>
<tr>
<td>Air injector</td>
<td>Device that allows controlled, cyclic admission of air during cleaning and sanitizing to produce slug flow conditions</td>
</tr>
<tr>
<td>Milk stone</td>
<td>Milk-mineral deposit on milk handling equipment</td>
</tr>
<tr>
<td>Forestripping</td>
<td>Process by which the first few streams of milk are removed from the teat prior to milking to observe for abnormalities and to flush the teat canal</td>
</tr>
<tr>
<td>Foremilk</td>
<td>First streams of milk stripped from the udder prior to milking</td>
</tr>
<tr>
<td>Milk letdown</td>
<td>Process through which milk is squeezed out of milk-producing tissue by the action of the hormone, oxytocin</td>
</tr>
<tr>
<td>Residual milk</td>
<td>Milk remaining in the mammary gland following completion of milking</td>
</tr>
<tr>
<td>Mastitis</td>
<td>An inflammation of the udder, most commonly caused by infecting microorganisms</td>
</tr>
<tr>
<td>Inflammation</td>
<td>Condition in which the cow's body seeks to eliminate or neutralize invading microorganisms and repair damaged tissue.</td>
</tr>
<tr>
<td>Intramammary infection</td>
<td>Infection characterized by the presence of microorganisms growing in the udder</td>
</tr>
<tr>
<td>Subclinical mastitis</td>
<td>Mastitis with no detectable change in the udder itself and no observable abnormality of the milk</td>
</tr>
</tbody>
</table>
HORMONES

Adrenaline (epinephrine) can interfere with milk ejection when a cow becomes frightened or upset.

Oxytocin is the hormone that causes milk letdown. It is produced by the hypothalamus, but secreted from the posterior pituitary. Maximum oxytocin concentration in blood occurs one minute after beginning stimulation.

Prolactin is the pituitary hormone that is critical in the initiation and maintenance of lactation.

Estrogen and **progesterone** are **ovarian hormones** that are involved in the development of the mammary gland.

MILK PRODUCTION

The **parts of the teat** through which milk passes are the **teat cistern**, **sphincter muscle**, and **streak canal** (teat canal).

Cows milked three times a day will normally produce 8 to 15 percent more milk than cows milked twice a day.

Cows calving in **November**, **December**, and **January** have the highest **305-day milk production**.

MILKING FACILITIES

Types of milking parlors include **herringbone**, **parallel**, **parabone**, **rotary**, and **side opening**.

The **herringbone parlor** is the most common type in use today.

Automatic milking systems milk cows without human labor. Other names for automatic milking systems are **voluntary milking systems** and **robotic milking**.
MILKING EQUIPMENT

Parts of a milking unit include the claw, teat cup shell, teat cup liner (inflation), milk tube, and short air tube.

Teat cup liners (inflations) should generally be replaced every 1,000 – 1,200 cow milkings. Specifically, the teat cup liner (inflation) is the only part of the milking system that touches the cow.

Signs of a malfunctioning milking system include:
- Excessive vacuum fluctuation
- Slow milking
- Teat cups fall off
- Flooded milk lines
- Squawking teat cups
- Uneven milk flow

A liner slip may be caused by:
- Improper liner design
- Vacuum fluctuations
- Cluster weight
- Milking wet teats

Vacuum pressure at the teat end at the time of milking should be 12 to 13 inches of mercury.

CLEANING EQUIPMENT

A standard milking equipment cleaning protocol consists of four phases:
1. Pre-rinse
2. Chlorinated alkaline cleaning
3. Acid rinse
4. Sanitization

The key factors for adequate, effective cleaning of milking systems are contact time, water temperature, and chemical concentration.

Recommended temperature of water for washing the bulk tank, lines, and other equipment is 160°F. Dirty equipment is most frequently the cause of high bacteria counts in milk.

MILKING PROCEDURES

The recommended milking procedures are:
1. Provide a clean, low stress environment for cows.
2. Check foremilk and udder for mastitis.
3. Pre-dip teats in an effective product and provide a 20 to 30-second contact time.
4. Dry teats completely with an individual towel.
5. Attach milking unit within 1 minute after the start of stimulation.
6. Adjust units as necessary for proper alignment.
7. Shut off vacuum before removing unit.
8. Dip teats immediately after unit removal with an effective product.

Consequences of long pre-milking stimulation include:
- Lower production
- Higher somatic cell count (mastitis problems)
- Slower milking time

CLOTH TOWELS

When using cloth towels in udder preparation, the following guidelines are recommended:
- Use a separate towel for each cow.
- Wash cloth towels using warm water.
- Do not let damp towels sit between uses because of yeast or mold contamination.
- Dry towels immediately after washing or add bleach when washing.
TEAT DIPS

When using a teat dip as a **pre-dip**, the dip should be left on the teat for at least 20 to 30 seconds before it is wiped off.

The main **reason for teat dipping after each milking** (post-dipping) is to reduce the rate of new infection in the udder.

Solutions commonly used as teat dips include:
- Bronopol
- Chlorhexidine
- Chlorine
- DDBSA
- Hydrogen peroxide
- Iodine
- Quaternary ammonia

MASTITIS

The **major factors** involved in bovine mastitis are the cow, microorganisms, and environment.

Mastitis is the most costly disease in dairy cattle. **Economic losses** due to mastitis are estimated to be about $200 per cow per year.

Mastitis-related costs include:
- Reduced milk production (64%)
- Discarded milk (14%)
- Early cow replacement cost (8%)
- Reduced cow sale value (5%)
- Drugs (5%)
- Veterinarian (3%)
- Labor (1%)
- Lost milk premiums (variable)

The **main types of mastitis** are subclinical mastitis, clinical mastitis, acute mastitis, and chronic mastitis.

Symptoms of clinical mastitis include:
- Flakes
- Stringy milk
- Hot quarter
- Presence of blood
- Clots
- Watery milk
- Swollen quarter

The California Mastitis Test, conductivity, and strip cup are **on-farm screening tests** to detect mastitis.

Potential causes of mastitis include:
- Failure to teat dip
- Poor housing/environment
- Poor sanitation
- Faulty milking equipment
- Poor milking practices
- Stray voltage
- Improper dry cow management
- Swollen quarter

Steps in a **good mastitis control program** are:
- Use functionally adequate milking equipment in the correct manner.
- Dip teats after milking with an effective product.
- Treat clinical cases immediately with recommended dosages.
- Treat every quarter of every cow at dry off with an effective dry cow product.
- Cull chronic cows.

The most effective **measures to prevent new mastitis infections** are **teat dipping** and **dry cow antibiotic treatment**.

The **streak canal (teat canal)** is the cow’s first line of defense against mastitis infections; **leukocytes** are the second natural line of defense.
SOMATIC CELLS

High numbers of somatic cells in milk are generally an indicator of infection (mastitis). Somatic cells include two types of cells:

- **White blood cells** (leukocytes) that move into the udder during inflammation
- **Epithelial cells** from milk producing tissues

Normal milk generally has a SCC less than 200,000 cells/milliliter.

The legal limit for somatic cell counts in raw milk in the United States is 750,000 cells/ml. The limit in the European Community is 400,000 cells/ml.

U.S. milk and milk products exported to European Union member countries must have a rolling average somatic cell count less than 400,000 cells/ml.

MASTITIS-CAUSING PATHOGENS

Culturing milk samples (on-farm or in a lab) can provide information for mastitis prevention, treatment and control by identifying the mastitis-causing pathogen.

Contagious mastitis-causing pathogens are those growing in the udder that are spread from cow to cow. Examples include:

- *Staphylococcus aureus* (*Staph. aureus*)
- *Mycoplasma* species
- *Streptococcus agalactiae* (*Strep. ag.~*)

Environmental mastitis-causing pathogens grow in the cow’s environment and contact the udder and teats causing infection. They include bacteria classified as coliforms or environmental Streptococci.

- **Coliforms** include:
 - Escherichia coli (E. coli)
 - Enterobacter species
 - Klebsiella species

- **Environmental Streptococci** include:
 - Streptococcus dysgalactiae
 - Streptococcus uberis

Many other pathogens may cause mastitis including other bacteria, fungi, and yeast.

ENVIRONMENT

Factors affecting the dairy cow’s environment are:

- Climate
- Herd size
- Frequency and duration of confinement housing
- Season of year
- Housing type
- Management of cows and facilities

Sources of environmental bacteria in dairy herds are:

- Soil
- Bedding
- Mud
- Water
- Feedstuffs
- Feces
MILK QUALITY AND COMPOSITION

The legal limit for bacteria counts in raw milk in the U.S. is 100,000 cfu/ml. Sources of on-farm milk contamination include:

- Air (dust)
- Dirt (outside of the cow)
- Feed
- Interior of udder
- Antibiotics
- Equipment
- Insects
- Water

Factors that can influence milk composition include:

- Age of cow
- Somatic cell count
- Milking procedures
- Environmental temperature
- Breed
- Season
- Genetics
- Estrus
- Stage of lactation
- Nutrition

Conditions that will cause a decrease in fat test include:

- Finely chopped feeds
- Extremely hot weather
- Estrus
- Low fiber content in ration
- Illness

Mastitis has an effect on milk composition.

Components that decrease in concentration in mastitic milk are:

- Lactose
- Solids not fat
- Calcium
- Total proteins
- Total solids
- Phosphorus
- Casein
- Fat
- Potassium

Components that increase in concentration in mastitic milk are:

- Lipase
- Chloride
- Leukocytes
- Sodium
- Immunoglobulins
- Trace Minerals

DRY PERIOD

The traditionally recommended length of the dry period for dairy cows is 45 to 60 days.

The most effective time to treat mastitis infections is at drying off.

The purposes of dry cow antibiotic treatment are to remove existing infections and prevent new infections.

Reasons to treat every quarter of every cow at drying off are:

- Higher concentration of antibiotics (than lactating products)
- Antibiotics remain longer
- No discarding of saleable milk
- Prevent new infections
Chapter 8: Dairy Products and Milk Marketing

ACRONYMS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADV</td>
<td>Acid degree value</td>
</tr>
<tr>
<td>CFU</td>
<td>Colony forming units</td>
</tr>
<tr>
<td>CLA</td>
<td>Conjugated linoleic acid</td>
</tr>
<tr>
<td>COOL</td>
<td>Country of Origin Labeling</td>
</tr>
<tr>
<td>CWT</td>
<td>Cooperatives Working Together</td>
</tr>
<tr>
<td>DIPP</td>
<td>Dairy Indemnity Payment Program</td>
</tr>
<tr>
<td>GATT</td>
<td>General Agreement on Tariffs and Trade</td>
</tr>
<tr>
<td>HACCP</td>
<td>Hazard Analysis and Critical Control Points</td>
</tr>
<tr>
<td>HTST</td>
<td>High temperature, short time</td>
</tr>
<tr>
<td>MPP-Dairy</td>
<td>Margin Protection Program for Dairy</td>
</tr>
<tr>
<td>NAFTA</td>
<td>North American Free Trade Agreement</td>
</tr>
<tr>
<td>NFDM</td>
<td>Non fat dry milk</td>
</tr>
<tr>
<td>NOP</td>
<td>National Organic Program</td>
</tr>
<tr>
<td>PI</td>
<td>Preliminary incubation</td>
</tr>
<tr>
<td>PMO</td>
<td>Pasteurized Milk Ordinance</td>
</tr>
<tr>
<td>RDA</td>
<td>Recommended Daily Allowance</td>
</tr>
<tr>
<td>SNF</td>
<td>Solids not fat</td>
</tr>
<tr>
<td>SPC</td>
<td>Standard plate count</td>
</tr>
<tr>
<td>TS</td>
<td>Total solids</td>
</tr>
<tr>
<td>UF</td>
<td>Ultrafiltration</td>
</tr>
<tr>
<td>UHT</td>
<td>Ultra high temperature</td>
</tr>
</tbody>
</table>

DEFINITIONS

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw milk</td>
<td>Milk as it comes from the cow prior to processing</td>
</tr>
<tr>
<td>Casein</td>
<td>The primary protein found in milk</td>
</tr>
<tr>
<td>Lactose</td>
<td>Milk sugar that gives milk its sweet flavor</td>
</tr>
<tr>
<td>Lactase</td>
<td>Enzyme needed by humans to digest lactose</td>
</tr>
<tr>
<td>Lactose intolerance</td>
<td>Condition when a person cannot break down milk sugar</td>
</tr>
<tr>
<td>Acid degree value</td>
<td>Test that detects rancidity in milk</td>
</tr>
<tr>
<td>Cryoscope</td>
<td>Instrument used to test the freezing point of milk to determine if water has been added</td>
</tr>
<tr>
<td>Standard place count</td>
<td>Test that measures bacterial content of raw milk to monitor milk quality</td>
</tr>
<tr>
<td>Phosphatase test</td>
<td>Test used to determine if raw milk has mixed with pasteurized milk</td>
</tr>
<tr>
<td>Lipase</td>
<td>Enzyme that breaks down butterfat, leading to rancidity</td>
</tr>
<tr>
<td>Clarification</td>
<td>Process that removes solid impurities from milk prior to pasteurization</td>
</tr>
</tbody>
</table>
Milk

Milk is nature’s most nearly perfect food. Milk is **96-98% digestible**.

Animals other than the cow are also used to produce milk for human consumption throughout the world. These animals include the goat, sheep, camel, water buffalo, reindeer, horse, and yak.

Cow’s milk consists of 87.4% water and 12.6% milk solids.

Milk solids can be divided into solids-not-fat (8.9%) and fat (3.7%).

Components of the solids-not-fat part of milk are protein (3.4%), lactose (4.8%), and minerals (0.7%).

The **minimum total solids-not-fat content** in the legal definition of milk is 8.25%.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Separation</td>
<td>Process of dividing milk into skim milk and cream</td>
</tr>
<tr>
<td>Standardization</td>
<td>Process that assures that milk and dairy products will be uniform in protein and fat content</td>
</tr>
<tr>
<td>Pasteurization</td>
<td>Process that destroys any disease-producing bacteria that might be present in raw milk</td>
</tr>
<tr>
<td>Fortification</td>
<td>Process by which vitamins are added to milk</td>
</tr>
<tr>
<td>Hazard Analysis and Critical Control Points</td>
<td>System of quality control that identifies where mistakes often occur</td>
</tr>
<tr>
<td>Churning</td>
<td>Process that turns cream into butter</td>
</tr>
<tr>
<td>Rennet</td>
<td>Substance containing many enzymes that is obtained from the lining of a calf’s stomach</td>
</tr>
<tr>
<td>Rennin</td>
<td>Enzyme found in rennet that is used to coagulate protein (casein) when making cheese</td>
</tr>
<tr>
<td>Whey</td>
<td>Fluid by-product of cheese making</td>
</tr>
<tr>
<td>Cream</td>
<td>High fat milk product separated from milk</td>
</tr>
<tr>
<td>Cultured dairy products</td>
<td>Dairy foods that have been fermented with lactic acid bacteria</td>
</tr>
<tr>
<td>Milk class</td>
<td>Describes how milk is used by the processor or in a marketing area</td>
</tr>
<tr>
<td>Fluid milk</td>
<td>Packaged dairy products used as beverage milks</td>
</tr>
<tr>
<td>Fluid products</td>
<td>Term traditionally used to define products including beverage milks, fluid cream items, and yogurts</td>
</tr>
<tr>
<td>Fluid utilization</td>
<td>Proportion of Grade A milk in a market used to produce fluid (Class I) milk</td>
</tr>
<tr>
<td>Manufacturing milk</td>
<td>Grade B milk or the Grade A milk used in the production of manufactured dairy products</td>
</tr>
<tr>
<td>Manufacturers</td>
<td>Producers of cheese, butter, nonfat dry milk, and other storable dairy products</td>
</tr>
<tr>
<td>Processors</td>
<td>Firms that process raw Grade A milk into fluid products.</td>
</tr>
<tr>
<td>Mailbox milk price</td>
<td>Price for milk of average composition and is a weighted average for the market; accounts for all payments received for milk including performance bonuses and premiums; also accounts for all deductions such as promotion, hauling, capital retains, and cooperative dues</td>
</tr>
</tbody>
</table>

MILK
PROTEIN
Milk contains casein and whey proteins. Milk taste improves as the protein level in milk increases.

LACTOSE
Lactose is the major solids component of milk. The simple sugars that make up lactose are glucose and galactose.

VITAMINS AND MINERALS
Vitamin D is added to milk at processing time to prevent rickets. It is essential for efficient use of calcium and phosphorus in bone growth. Reduced fat (2% fat), lowfat (1% fat), and skim milk must be fortified with Vitamin A to be nutritionally similar to whole milk. The minerals found in milk that are important in bone growth are calcium and phosphorus.

CONJUGATED LINOLEIC ACID
Conjugated linoleic acid (CLA) is an 18-carbon fatty acid present in milk, particularly from cows grazing pasture, which has been found to have cancer prevention effects. CLA content is greater in higher fat products.

MILK QUALITY
The expiration date on a milk carton is a customer’s assurance of a fresh dairy product. The “Real Seal” assures the customer that the product they are purchasing is a genuine dairy product. Advantages of high quality milk from a processor’s point of view include:
- Improved flavor
- Long shelf life
- Reduced hauling and handling costs due to low quality milk not having to be diverted to an alternative use

Advantages of high quality milk from a dairy producer’s point of view include:
- Greater profitability
- Increased milk yield
- Low culling rates
- Reduced labor and labor cost
- Larger milk checks due to improved milk per cow and premiums

ON-FARM MILK STORAGE
A bulk tank should be washed and sanitized every time it is emptied. Grade A raw milk must be cooled to 45°F or less within two hours after milking. After the first milking, the temperature of milk in a bulk tank should not reach higher than 50°F at any time. Milk temperature should be kept under 40°F to maintain the best quality.
MILK QUALITY TESTS

Raw milk quality tests used by milk plants include:

- Acid degree value
- Antibiotic test
- Flavor
- Freezing point
- Leukocyte (somatic cell) count
- Preliminary incubation (PI) count
- Sediment test
- Standard plate count

OFF-FLAVORS

Common off-flavors in milk are:

- Acid
- Bitter
- Cooked
- Feed
- Fermented
- Foreign
- Fruity
- Lacks freshness
- Oxidized
- Rancid
- Salty
- Sour

Off-flavors in milk are most commonly found in the butterfat component.

An oxidized flavor can result from exposing milk to:

- Sunlight or fluorescent lighting (Light-oxidized)
- Copper bearing surfaces (Metal-oxidized)

Pigmented milk cartons are used to prevent an oxidized flavor.

A sour flavor occurs when there are large numbers of bacteria present in milk.

ANTIBIOTIC RESIDUES

Antibiotic residues are not allowed in milk for human consumption. Reasons for this regulation include:

- Some people are allergic to antibiotics. (Main reason)
- Milk that contains antibiotic residues is not good for cheese making.
- Bacteria may become resistant to antibiotics.
- Antibiotics are not a natural part of milk.

PASTEURIZATION

Pasteurization increases the shelf life of milk by substantially reducing the total bacteria population.

Pasteurization destroys lipase and other natural milk enzymes, which might cause off-flavor in milk during refrigerated storage.

The batch or holding method of pasteurization heats milk to 145°F for not less than 30 minutes.
The high temperature, short time method of pasteurization heats milks to 161°F for 15 seconds.

BEVERAGE MILKS

Milk is labeled according to the following standards:

<table>
<thead>
<tr>
<th>Label</th>
<th>Other Names</th>
<th>Grams of fat per cup</th>
<th>Calories per cup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fat free</td>
<td>Nonfat, skim</td>
<td>0</td>
<td>80</td>
</tr>
<tr>
<td>Lowfat</td>
<td>1% fat</td>
<td>2.5</td>
<td>100</td>
</tr>
<tr>
<td>Reduced fat</td>
<td>2% fat</td>
<td>5</td>
<td>120</td>
</tr>
<tr>
<td>Whole</td>
<td></td>
<td>8</td>
<td>150</td>
</tr>
</tbody>
</table>

Titanium dioxide is often added to fat free milk to whiten the milk.
BUTTER

It takes 21.2 pounds of whole milk to make a pound of butter. Butter must contain a minimum of 80% fat.

U.S. Grade AA is the highest grade of butter sold in the U.S.

One stick of butter = 1/2 cup = 1/4 pound = 8 tablespoons

CHEESE

It takes 10 pounds of whole milk to make a pound of cheese.

The protein content of milk most affects the amount of cheese one can get from a unit of milk.

The major components of dried whey are lactose, minerals, and protein.

Cheese is classified according to its consistency. The classes are soft, semi-soft, hard, and very hard.

Mozzarella cheese is the most popular variety of cheese in the United States. Cheddar is second most popular.

Feta and Roquefort are cheeses made from the milk of animals other than the dairy cow.

CREAM

Cream must contain at least 18% milk fat.

Cream varieties include:

- Half & half
- Light cream
- Cream in aerosol cans
- Reduced-fat sour cream
- Sour half & half
- Light whipping cream
- Sour cream
- Acidified sour half & half
- Heavy cream
- Acidified sour cream

FROZEN DAIRY PRODUCTS

Frozen dairy products include ice cream, frozen custard, sherbet, and frozen yogurt.

It takes 12 pounds of whole milk to make a gallon of ice cream.

Federal standards require ice cream to contain a minimum of 10% milk fat and 20% total milk solids by weight.

Some premium ice creams contain 16% milk fat.

CULTURED DAIRY PRODUCTS

Cultured dairy product examples include:

- Acidophilus milk
- Buttermilk
- Crème fraîche
- Kefir
- Sour cream
- Yogurt

Yogurt is a mixture of milk (whole, reduced-fat, lowfat, or nonfat) and cream fermented by a culture of lactic acid-producing bacteria. Yogurt contains at least 3.25% milk fat and 8.25% solids-not-fat.

Authentic Greek yogurt is made by straining yogurt using muslin or cheesecloth to remove whey from the yogurt to make it creamy and thick. It takes four pounds of milk to make one pound of authentic Greek yogurt.
FEDERAL MILK MARKETING ORDERS

The Agricultural Marketing Agreement Act of 1937 provided for Federal Milk Marketing Orders. The Secretary of Agriculture regulates Federal Milk Marketing Orders. The federal orders specify minimum prices and conditions under which regulated milk handlers must operate when selling fluid milk products within a specified geographic area.

There are ten Federal Milk Marketing Orders in the Unites States. Component pricing is used in six of the orders.

The current Federal Milk Marketing Orders are:
- Appalachian
- Arizona
- Central
- Florida
- Mideast
- Northeast
- Pacific Northwest
- Southwest
- Upper Midwest
- Southeast

MILK CLASSES

Federal Milk Marketing Orders have four milk classes based on how milk is used by the processor or in a marketing area.

<table>
<thead>
<tr>
<th>Class I</th>
<th>Beverage milks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class II</td>
<td>Fluid cream products, yogurt, and manufactured products (ice cream, cottage cheese)</td>
</tr>
<tr>
<td>Class III</td>
<td>Cream cheese and hard manufactured cheese</td>
</tr>
<tr>
<td>Class IV</td>
<td>Butter and milk in dried form</td>
</tr>
</tbody>
</table>

MILK GRADES

Fluid grade (Grade A) milk is milk produced under sanitary conditions that qualify it for fluid consumption. Only Grade A milk is regulated under Federal Milk Marketing Orders.

The Pasteurized Milk Ordinance (PMO) is the document that establishes the standards for Grade A milk.

Manufacturing grade (Grade B) milk is milk not meeting the fluid grade standards. Less strict standards generally apply.

MILK COOPERATIVES

The top five milk producing cooperatives in the U.S. based on member milk volume in 2015 were:
1. Dairy Farmers of America
2. California Dairies, Inc.
3. Land O’Lakes, Inc.
4. FarmFirst Dairy Cooperative
5. Northwest Dairy Association

The top 50 cooperatives accounted for 80 percent of the milk produced in the U.S. in 2015.

COOPERATIVES WORKING TOGETHER

Cooperatives Working Together (CWT) is a dairy farmer-funded self-help program to address supply and demand imbalances that can depress milk prices. The CWT program focuses on providing export assistance.

CWT is operated within the structure of the National Milk Producers Federation.

CWT’s funding comes from farmers who invest 4 cents per hundredweight of milk sold.
ORGANIC DAIRY PRODUCTION

Organic dairy production is a method of production that uses:

- No hormones to promote growth
- No mammalian or poultry by-products in feed
- No antibiotics
- 100% organic feed

California ranks first among the states for the number of organic dairy cows.

USDA's National Organic Program (NOP) regulates the standards for any farm, wild crop harvesting, or handling operation that wants to sell an agricultural product as organically produced.

NOP standards for organic livestock production require access to pasture throughout the grazing season and a diet consisting of at least 30% dry matter intake from pasture grazed during the grazing season, totaling at least 120 days.

DAIRY PROMOTION

Fifteen cents per hundredweight of milk sold are deducted from every dairy producer’s milk check to pay for promotion and research through the dairy checkoff.

Started in 1937, June Dairy Month was originally called National Milk Month. The American Dairy Association is the national leader for June Dairy Month.

National Grilled Cheese Month is observed in April.

National Ice Cream Month is observed in July.

The dairy case is usually placed at the rear of the store because it causes shoppers to walk past many other products in order to get to the dairy case, which increases impulse buying.

The “Got Milk?” campaign was first used by California milk processors in 1993. It was retired by MilkPEP in 2014 and was replaced by the “Milk Life” tagline.

DAIRY PRODUCT CONSUMPTION

As a person’s age increases, his/her milk consumption tends to decrease.

McDonald’s is the fast food chain that uses the most milk in the U.S.

Milk is the victory drink at the Indianapolis 500 each year.

DIETARY GUIDELINES

According to the 2015 Dietary Guidelines for Americans, the following amounts of dairy are recommended in the Healthy U.S.-Style Pattern:

- For children ages 2 to 3 years: 2 cup-equivalents per day
- For children ages 4 to 8 years: 2 ½ cup-equivalents per day
- For adolescents ages 9 to 18 years and adults: 3 cup-equivalents per day

MyPlate is an illustration of the five food groups in a place setting based on the 2010 Dietary Guidelines for Americans; it is designed to help consumers make healthier food choices.
Chapter 9: Miscellaneous

<table>
<thead>
<tr>
<th>ACRONYMS</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTAP</td>
<td>Current Test Day Analysis Program</td>
</tr>
<tr>
<td>DCR</td>
<td>Data collection rating</td>
</tr>
<tr>
<td>DIM</td>
<td>Days in milk</td>
</tr>
<tr>
<td>ECM</td>
<td>Energy corrected milk</td>
</tr>
<tr>
<td>ERPA</td>
<td>Estimated relative producing ability</td>
</tr>
<tr>
<td>FCM</td>
<td>Fat corrected milk</td>
</tr>
<tr>
<td>ME</td>
<td>Mature equivalent</td>
</tr>
<tr>
<td>PCDART</td>
<td>Personal Computer Direct Access to Records by Telephone</td>
</tr>
<tr>
<td>RIP</td>
<td>Record in progress</td>
</tr>
<tr>
<td>SMV</td>
<td>Slow moving vehicle</td>
</tr>
<tr>
<td>TQM</td>
<td>Total quality management</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WEIGHTS AND MEASURES</th>
<th>Item</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A gallon of milk</td>
<td>8.6 pounds</td>
</tr>
<tr>
<td></td>
<td>A quart of milk</td>
<td>2.15 pounds</td>
</tr>
<tr>
<td></td>
<td>A bushel of corn</td>
<td>56 pounds</td>
</tr>
<tr>
<td></td>
<td>A bushel of wheat</td>
<td>60 pounds</td>
</tr>
<tr>
<td></td>
<td>A bushel of barley</td>
<td>48 pounds</td>
</tr>
<tr>
<td></td>
<td>A bushel of barley</td>
<td>48 pounds</td>
</tr>
<tr>
<td></td>
<td>A bushel of oats</td>
<td>32 pounds</td>
</tr>
<tr>
<td></td>
<td>A bushel of soybeans</td>
<td>60 pounds</td>
</tr>
<tr>
<td></td>
<td>A hundredweight (cwt)</td>
<td>100 pounds</td>
</tr>
<tr>
<td></td>
<td>A kilogram</td>
<td>2.2 pounds</td>
</tr>
</tbody>
</table>

U.S. DAIRY INDUSTRY AT A GLANCE IN 2016

<table>
<thead>
<tr>
<th>Item</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of licensed dairy farms</td>
<td>41,809</td>
</tr>
<tr>
<td>Number of dairy cows*</td>
<td>9.3 million</td>
</tr>
<tr>
<td>Milk per cow per year</td>
<td>22,774 pounds</td>
</tr>
<tr>
<td>Milk production</td>
<td>212.4 billion pounds</td>
</tr>
</tbody>
</table>

*The number of dairy cows reached its peak in 1945.
The standard length of a DHIA record is 305 days. The meaning of “305-2X-ME” on dairy records is that the lactation record was adjusted to a 305-day lactation, twice a day milking, mature equivalent.

If one sees “3X” in a dairy animal’s production records, it means the cow was milked three times a day. A DHIA record may be terminated if a cow has dried off, aborted or died.

A lactation record is generally adjusted for lactation length, mature equivalent, and 2 times a day milking. Lactation records in progress can be used in calculation of USDA-AIPL Sire Summaries if they have at least one test and are a minimum of 40 days in length.

A Data Collection Rating (DCR) is an indicator of the amount of information included in a production record and the resulting accuracy level when compared to production records with either less or more information.

National DHIA and Quality Certification Services offer 20 DHI test plans to participating producers.

Laboratory tests available through DHI include:
- Butterfat percentage
- Solids-not-fat percentage (SNF)
- Somatic cell count (SCC)
- Protein percentage
- Milk urea nitrogen (MUN)
- Johne’s disease

CULLING

Reasons for culling a dairy cow from the herd include:
- Low production
- Reproduction
- Feet and legs
- Injury
- Mastitis
- Udder
- Disease
- Disposition

Dairy cattle can be sold privately on farm or in auction sales. Types of auction sales are consignment, dispersal, and reduction.

FARM BUSINESS MANAGEMENT

The necessary economic inputs for a dairy operation are land, labor, capital, and management.

A cooperative is a firm that is owned by its farmer members, is operated for their benefit, and distributes earnings on the basis of patronage.
PRECISION DAIRY FARMING

Precision dairy farming is the use of technologies to measure physiological, behavioral, and production indicators on individual animals to improve management strategies and farm performance.

Examples of precision dairy farming include:
- Daily milk yield monitoring
- Milk component monitoring
- Pedometers
- Accelerometers

Benefits of precision dairy farming include:
- Improved animal health and well-being
- Increased efficiency
- Reduced costs
- Improved product quality
- Minimized adverse environmental impacts
- Risk analysis and management
- More objective (less observer bias and influence)

FARM BILL

Every five years, the U.S. Congress passes a bundle of legislation called the Farm Bill; it sets national policy for agriculture, nutrition, conservation, and forestry.

The Agricultural Act of 2014 is the name of the 2014 Farm Bill.

LABOR MANAGEMENT

The minimum wage in the U.S. is $7.25 per hour, effective July 24, 2009.

Selection tools that a dairy manager can use when hiring a new employee include:
- Application forms
- Reference checks
- Trial periods
- Interviews
- Work tests

The Worker Protection Standard is an Environmental Protection Agency (EPA) program designed to protect the nation's agricultural workers from pesticides.

PHOTOPERIOD

Long-day photoperiod, providing 16 to 18 hours of light per day, may stimulate lactating cows to produce 5 pounds more milk per day on average.

Melatonin is the hormone released by the pineal gland in response to longer day length.

Short-day photoperiod exposes cows to 8 hours of light followed by 16 hours of darkness. Dry cows exposed to a short-day photoperiod produce more milk in the next lactation than similar cows exposed to long day photoperiod or natural light conditions.

ANIMAL WELL-BEING

According to the American Veterinary Medical Association, animal welfare is the ethical responsibility of ensuring animal well-being.

Animal well-being is the condition in which animals experience good health, are able to effectively cope with their environment, and are able to express a diversity of species-typical behaviors.

The National Dairy Animal Well-Being Initiative is a producer-led effort to build consumer trust and confidence in the dairy industry's commitment to animal well-being.

An animal rights activist is a person who believes that an animal's life has the same value as a human's life and has the goal of eliminating all systems that involve the use of animals by humans.
The main reason that dairy cows refuse to use freestalls is improper size. The parts of a freestall include:

- Support post
- Stall partition
- Neck rail
- Brisket board (tube)
- Stall surface (bedding, mattress)
- Rear curb
Chapter 10: Reproduction

ACRONYMS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI</td>
<td>Artificial insemination</td>
</tr>
<tr>
<td>CIDR</td>
<td>Controlled internal drug release</td>
</tr>
<tr>
<td>CL</td>
<td>Corpus luteum</td>
</tr>
<tr>
<td>CR</td>
<td>Conception rate</td>
</tr>
<tr>
<td>ET</td>
<td>Embryo transfer</td>
</tr>
<tr>
<td>FSH</td>
<td>Follicle stimulating hormone</td>
</tr>
<tr>
<td>GnRH</td>
<td>Gonadotropin releasing hormone</td>
</tr>
<tr>
<td>IVF</td>
<td>In vitro fertilization</td>
</tr>
<tr>
<td>LH</td>
<td>Luteinizing hormone</td>
</tr>
<tr>
<td>MOET</td>
<td>Multiple ovulation and embryo transfer</td>
</tr>
<tr>
<td>PGF2α</td>
<td>Prostaglandin F2α</td>
</tr>
<tr>
<td>PR</td>
<td>Pregnancy rate</td>
</tr>
<tr>
<td>SCR</td>
<td>Sire conception rate</td>
</tr>
<tr>
<td>TAI</td>
<td>Timed artificial insemination</td>
</tr>
</tbody>
</table>

COW’S REPRODUCTIVE TRACT

The parts of the cow’s reproductive tract are:
- Vulva
- Vagina
- Cervix
- Uterus
- Oviduct
- Ovary

The broad ligament is the structure that holds the uterus and ovaries in their proper position.

The site of semen deposition in natural service (bull) is in the vagina next to the cervix; in artificial insemination it is normally in the body of the uterus.

OVARIES

The main functions of the ovary are production of ova and secretion of hormones essential for reproduction.

One hundred percent (100%) of the ova in a mature cow’s ovaries were present at birth.

Ovulation is the process of releasing an ovum from the follicle on the ovary.

The fertile life of an ovum after its release from the follicle is 6 to 12 hours.

The corpus luteum is a temporary gland that forms on the ovary after the ovum is released. It is also called yellow body.
FEMALE REPRODUCTIVE HORMONES

Gonadotropin Releasing Hormone (GnRH)
- Secreted by the hypothalamus;
- Controls the secretion of pituitary hormones (FSH and LH)

Follicle Stimulating Hormone (FSH)
- Secreted by the anterior pituitary gland;
- Stimulates growth of follicles

Luteinizing Hormone (LH)
- Secreted by the anterior pituitary gland
- Causes the follicle to rupture and then causes the corpus luteum to replace the follicle;
- Increases dramatically in concentration 24 hours prior to ovulation soon after the onset of estrus

Estrogen (E2)
- Produced by the follicle;
- Necessary for behavioral estrus and peaks at the onset of standing estrus

Progesterone (P4)
- Produced by the corpus luteum;
- Necessary for the maintenance of pregnancy;
- Inhibits the release of GnRH from the hypothalamus

Prostaglandin (PGF)
- Produced by the uterus (endometrium);
- Causes destruction or regression of the corpus luteum

ESTROUS CYCLE

The normal range in length of the estrous cycle is 18 to 24 days.
On average, there are 21 days between heat periods in dairy cows.
The phases of the estrous cycle are:
- Follicular (active follicles are present)
- Luteal (corpus luteum is the dominant ovarian structure)
The stages of the estrous cycle are:
1. Estrus: heat period
2. Metestrus: transition
3. Diestrus: corpus luteum present
4. Proestrus: prior to estrus

Follicles develop in a wave-like pattern known as the follicular wave. There are five phases of a follicular wave:
- Recruitment
- Selection
- Growth
- Dominance
- Regression

There are normally 2 or 3 follicular waves during an estrous cycle in cattle.

ESTRUS

Estrus is the period of heat in dairy cattle.
Duration of standing heat is usually 2 to 12 hours with an average of 7 hours.
Pregnancy is the most common cause of a cow not coming back into heat. It is estimated that 3 to 5% of pregnant cows exhibit estrus.
Milk progesterone levels are low during estrus.
A silent heat is the condition where the physical signs of heat are difficult to detect.
Anestrus is the failure to have an estrous cycle. Poor nutrition and uterine infections are the leading causes.

Signs of estrus in dairy cattle include:
- Restlessness
- Following and smelling another cow
- Standing to be mounted
- Vulva becomes red and swollen
- Bellowing
- Mounting other cow
- Clear mucus discharge from vulva

Standing to be mounted is the most reliable sign of estrus.

Estrus synchronization programs include:
- CIDR
- Ovsynch
- Pre-Synch
- Co-Synch
- Heat-synch

Heat detection aids used on dairy farms include:
- Heat expectancy charts
- Pedometers
- Pressure sensors
- Detector animals
- Tail chalk
- Accelerometers
- Electronic heat detection systems

ARTIFICIAL INSEMINATION

Artificial insemination (AI) is the process of freezing semen from a bull and thawing it later to fertilize ova.

Advantages of using artificial insemination over natural service include:
- Safety
- Better disease control
- Easier to prove bulls
- Genetic improvement
- Better record keeping
- Less expensive than keeping a bull

A cow should be artificially inseminated 5 to 15 hours after the onset of standing heat.

A French straw is a thin cylinder in which frozen semen is preserved.

Liquid nitrogen is used to freeze and store semen. The temperature of liquid nitrogen is 320°F.

Frozen semen should be thawed in a warm water bath (90 to 95°F) for a minimum of 40 seconds to maximize the number of motile sperm.

FERTILIZATION

Fertilization is the process of joining an ovum and a sperm. It takes place in the oviduct.

A zygote is a fertilized ovum.

The fetus develops in the uterus after the ovum is fertilized.

EMBRYO TRANSFER

Embryo transfer is the process of removing a fertilized ovum from a donor cow and transferring it to another cow or heifer.

Most embryo transfers are conducted on day 7 or 8 after breeding.

A recipient is an animal that received a fertilized ovum from a donor.

Superovulation is the process that involves treating a cow with a hormone (FSH) to increase the number of ova produced.

Transvaginal aspiration uses ultrasonography to view the ovary while removing oocytes through the vagina using a needle. Harvested oocytes are matured and fertilized in vitro.
CONCEPTION RATE

Conception rate is the percent of services (breedings) that result in a pregnancy. Factors affecting a dairy herd’s conception rate include:

- Heat detection accuracy
- Semen (bull) fertility
- Herd (cow) fertility
- Technician competency

Reasons cows don’t become pregnant when the herd is bred by artificial insemination include:

- Failure to ovulate
- Hormone imbalance
- Failure to inseminate
- Heat detection errors
- Fertilization failure
- Poor quality semen
- Improper insemination technique

PREGNANCY RATE

Pregnancy rate is the percent of cows that become pregnant out of those cows eligible to become pregnant in a given period of time, usually 21 days. It is the combined effect of heat detection rate and conception rate.

Pregnancy rate is usually calculated every 21 days because that is the average length of the dairy cow’s estrous cycle.

Pregnancy rate can be calculated for AI bred herds, bull bred herds, or a combination of both.

PLACENTA

The placenta is the structure through which the fetus receives all of its nutrients.

The placenta is attached to the uterus in dairy cattle by maternal caruncles and fetal cotyledons (placentones).

A retained placenta is the condition when the fetal membranes remain attached to the maternal caruncles within the uterus for an extended period of time after calving (greater than 24 hours).

Retained placenta incidence is highest in summer.

GESTATION

Gestation is the period of pregnancy; it begins at fertilization and ends at birth.

Average gestation length varies from 276 to 292 days.

Gestation length can vary due to many factors including:

- Age of the cow
- Sex of the calf
- Season of the year
- Breed of the cow
- Number of calves carried

Brown Swiss cattle have the longest gestation period.

PARTURITION

Parturition is the act of giving birth.

Cortisol is the hormone the calf triggers in response to stress to initiate parturition.

Relaxin is the hormone released prior to calving that enables the cervix to soften and stretch in preparation for expelling the calf.
Signs that a cow is near calving include:

- Udder full
- Vulva enlarged
- Mucus discharge
- Restlessness
- Relaxation of ligaments at tail head

The normal birth position of a calf is front feet first with the head between the legs.

TIME TERMS

Voluntary Waiting Period (VWP) is the time period after calving when the dairy producer chooses not to breed a cow. The most common VWP is 60 days.

Days to first service is the days from calving until first breeding date.

Days open is the days from calving until conception or successful breeding date.

Calving interval is the period of time from one calving to the next calving, usually measured in months.

A herd's average calving interval is influenced by several factors including:

- Voluntary waiting period
- Conception rate
- Estrus (heat) detection
- Reproductive culling

MALE REPRODUCTIVE SYSTEM

The main functions of the testes are to produce sperm and produce the male sex hormones.

Cryptorchidism is the condition when one or both testes fail to descend from the abdomen into the scrotum, often affecting fertility.

Mature sperm are stored in the **epididymus**.

Sperm live 24 to 30 hours after being deposited in the cow’s reproductive tract. It takes sperm 6 hours to become **capacitated** (i.e., to develop the ability to fertilize the ovum).

Sperm produce **lactic acid** during metabolism.

Fructose is the primary sugar found in semen.

The male reproductive hormones include:

- **Follicle stimulating hormone (FSH)** – stimulates sperm production
- **Luteinizing hormone (LH)** – stimulates sperm production
- **Testosterone** – responsible for the male sex drive (libido)

SIRE CONCEPTION RATE

Sire Conception Rate (SCR) is an evaluation of artificial insemination (AI) service-sire fertility computed by the Council on Dairy Cattle Breeding; it is calculated for Ayrshire, Brown Swiss, Guernsey, Holstein, Jersey, and Milking Shorthorn bulls.

ULTRASOUND

Ultrasound can be used in a reproductive management program in several ways including:

- Pregnancy determination
- Determine if twins are being carried
- Determine sex of embryo
- Determine embryonic losses
- Monitor cystic ovaries
REPRODUCTIVE HEALTH

Reproductive failure is the number one reason for culling in U.S. dairy herds. Involution is the process where the uterus returns to normal size after calving. It usually takes 30 to 45 days after calving for a cow’s reproductive tract to return to normal.

Metritis is an infection of the uterus. Endometritis is an inflammation of the uterine lining. Incidence is highest in summer.

Sterility describes the animal that cannot reproduce. Infertility describes the animal that is neither normally fertile nor totally sterile.

Abortion is the premature expulsion of a fetus. Diseases that cause abortions in dairy cattle include:
- Brucellosis
- Chlamydia
- Leptospirosis
- Neospora
- Campylobacteriosis (Vibriosis)
- IBR
- Listeriosis
- Trichomoniasis

Cystic ovaries are found in 12-14% of problem breeders. They develop in 10-40% of dairy cows during their lifetime.

Types of cystic ovaries are follicular cysts, luteal cysts, and cystic corpus lutea.

Follicular cysts are thin-walled, anovulatory (not ovulating) cysts. They secrete variable amounts of estrogen.

Luteal cysts are thick-walled cysts. They secrete low levels of progesterone.

Cystic corpus lutea have characteristics similar to normal corpora lutea.

Twinning in dairy cattle has several disadvantages including:
- Reduced milk production during the lactation
- Calving difficulties are more frequent
- Abortion rates are higher
- Twins are often weak at birth
- Potential for a freemartin heifer

A freemartin is a sterile heifer born twin to a bull. Ninety percent (90%) of heifers born twin to a bull are sterile.
Chapter 11: Genetics

<table>
<thead>
<tr>
<th>ACRONYMS</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGIL</td>
<td>Animal Genetics and Improvement Laboratory</td>
</tr>
<tr>
<td>AIP</td>
<td>Animal Improvement Program</td>
</tr>
<tr>
<td>BAA</td>
<td>Breed Age Average</td>
</tr>
<tr>
<td>BLAD</td>
<td>Bovine Leukocyte Adhesion Deficiency</td>
</tr>
<tr>
<td>BLUP</td>
<td>Best Linear Unbiased Predictor</td>
</tr>
<tr>
<td>CCR</td>
<td>Cow Conception Rate</td>
</tr>
<tr>
<td>CE</td>
<td>Calving Ease</td>
</tr>
<tr>
<td>CMS$</td>
<td>Cheese Merit</td>
</tr>
<tr>
<td>CVM</td>
<td>Complex Vertebral Malformation</td>
</tr>
<tr>
<td>DBH</td>
<td>Difficult Birth in Heifers</td>
</tr>
<tr>
<td>DCE</td>
<td>Daughter Calving Ease</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic Acid</td>
</tr>
<tr>
<td>DPR</td>
<td>Daughter Pregnancy Rate</td>
</tr>
<tr>
<td>DUMPS</td>
<td>Deficiency of Monophosphate Synthase</td>
</tr>
<tr>
<td>EBV</td>
<td>Estimated Breeding Value</td>
</tr>
<tr>
<td>ETA</td>
<td>Estimated Transmitting Ability</td>
</tr>
<tr>
<td>FAIR</td>
<td>Farm Animal Identification and Records</td>
</tr>
<tr>
<td>FM$</td>
<td>Fluid Merit</td>
</tr>
<tr>
<td>FTI</td>
<td>Functional Trait Index</td>
</tr>
<tr>
<td>FUI</td>
<td>Functional Udder Index</td>
</tr>
<tr>
<td>GMS$</td>
<td>Grazing Merit</td>
</tr>
<tr>
<td>GMD</td>
<td>Gold Medal Dam</td>
</tr>
<tr>
<td>gPTA</td>
<td>Genomic Predicted Transmitting Ability</td>
</tr>
<tr>
<td>HCD</td>
<td>Haplotype for Cholesterol Deficiency</td>
</tr>
<tr>
<td>HCR</td>
<td>Heifer Conception Rate</td>
</tr>
<tr>
<td>JPI</td>
<td>Jersey Performance Index</td>
</tr>
<tr>
<td>MACE</td>
<td>Multiple-trait Across Country Evaluations</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger Ribonucleic Acid</td>
</tr>
<tr>
<td>NM$</td>
<td>Lifetime Net Merit</td>
</tr>
<tr>
<td>PA</td>
<td>Parent Average</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>PL</td>
<td>Productive Life</td>
</tr>
<tr>
<td>PPR</td>
<td>Progressive Performance Rating</td>
</tr>
<tr>
<td>PTA</td>
<td>Predicted Transmitting Ability</td>
</tr>
</tbody>
</table>
ANIMAL IDENTIFICATION

Identification is the first step in a herd improvement program.

American ID numbers for dairy cattle consist of a three letter country code followed by a twelve digit animal number and will be used by DHI organizations, breed associations, and state animal health departments. The country code for the U.S. is 840.

Visibility is the most important feature when selecting tags or brands for identification.

NAAB CODE FOR SIRES

The NAAB code for a sire has three parts.

- The number before the letter indicates the stud from which the bull’s semen can be purchased. It is referred to as the stud code.
 1 = Genex/CRI
 14 = Accelerated Genetics
 7 = Select Sires
 29 = ABS Global
 11 = Alta Genetics
 200 = Semex
- The letters indicate the breed.
 AY = Ayrshire
 BS = Brown Swiss
 HO = Holstein
 JE = Jersey
 RW = Red and White
 GU = Guernsey
 MS = Milking Shorthorn
- The number following the letters is an individual bull identification number.
 Example: 7HO00543 is the NAAB Code for CARLIN-M IVANHOE BELL.

BASIC GENETICS

A gene is the basic unit of inheritance.

A chromosome is a threadlike linear strand of DNA and associated proteins found in the nucleus of animal and plant cells that carries the genes and functions in the transmission of hereditary information. Dairy cattle have 30 pairs of chromosomes.

A locus is the position that a given gene occupies on a chromosome.
An **allele** is any of the alternative forms of a gene that may occur at a given locus.

Genotype is the genetic make-up of an individual.

Phenotype is the observed trait of an individual resulting from the effects of the genotype, the environment, and their interaction.

Heritability (h^2) is the measure of the percent of phenotypic differences between animals for a single trait that can be transmitted to offspring.

Predicted Transmitting Ability (PTA) is a measurement of average superiority or inferiority that will be transmitted to an offspring.

The **genetic make up of a population** can be changed by migration, selection, mutation, and chance.

GENOMICS

The total genetic content of an organism is known as its **genome**.

Genomics is the study of genes or gene products in an organism.

Proteomics is the study of all of the proteins that genes create.

Gene mapping is the process of determining where genes are located on individual chromosomes.

RELATIONSHIPS

A **pedigree** is a record of ancestry.

A **purebred** is a dairy animal whose sire and dam of the same breed are registered or who are eligible to be registered in a herdbook.

A **registration paper or certificate** accompanies a purebred animal and certifies its parentage.

The **sire** determines the sex of a calf.

The technical term used to describe brothers and sisters is **siblings**.

ANIMAL MODEL

The **Animal Model** is the genetic method for evaluating bulls and cows currently used.

When making its evaluation, the Animal Model uses **information** from:

- Parents (pedigree)
- Individual performance
- Progeny (offspring)

GENETIC EVALUATIONS

The **Council on Dairy Cattle Breeding** publishes U.S. genetic evaluations.

Official evaluations in 2017 will be released in April, August and December. **Genomic evaluations** will be released monthly.

A minimum of ten (10) daughters is required for a bull to have a **bull proof** published.

The **genetic base** for genetic evaluations is updated every five years. It was most recently updated in December 2014 and is the average PTA of animals born in 2010. The next base change is scheduled for 2020.

INTERBULL is the name of the International Bull Evaluation Service based in Uppsala, Sweden.

Reliability is an indicator of the accuracy of genetic evaluations.
GENETIC INDEXES

Lifetime Net Merit (NM$) is a genetic index. It combines the following traits for **Holsteins** and **Brown Swiss**:

- Milk
- Somatic cell score
- Udder composite
- Heifer conception rate
- Cow livability
- Fat
- Productive life
- Body weight composite
- Cow conception rate
- Protein
- Feet and legs composite
- Daughter pregnancy rate
- Calving ability*

NM$ for other breeds does not include calving ability.

Total Performance Index (TPI) is a genetic index used by the Holstein breed that is determined by placing emphasis on production and type. The traits included are:

- Protein
- Type
- Feed and Leg Composite
- Fertility Index
- Fat
- Dairy Form
- Productive Life
- Daughter Calving Ease
- Feed Efficiency
- Udder Composite
- Somatic Cell Score
- Daughter Stillbirth

Traits used in the Udder Composite Index for Holsteins are:

- Fore udder attachment
- Rear udder height
- Udder depth
- Rear udder width
- Udder cleft
- Front teat placement

Traits used in the Body Size Composite Index for Holsteins are stature, strength, body depth, and thurl width.

The **Feet and Legs Composite Index** for Holsteins is calculated using the traits of rear legs – side view, rear legs – rear view, and foot angle combined with the feet and legs score.

Traits used in the Dairy Capacity Composite Index for Holsteins are dairy form and strength.

The **Jersey Performance Index (JPI)** is a genetic index used by the Jersey breed that is determined by placing emphasis on production and type. The traits included are:

- PTA Protein
- Productive Life
- Daughter Pregnancy Rate
- Functional Trait Index*
- PTA Fat
- Livability
- Cow Conception Rate
- CFP Milk
- Somatic Cell Score
- Heifer Conception Rate

*There are 14 linear traits used for calculating the Functional Trait Index for Jerseys.

The **Jersey Udder Index** serves an indicator of mastitis resistance in Jerseys; it uses the following traits:

- Fore udder
- Udder cleft
- Front teat length
- Rear udder height
- Udder depth
- Rear teat placement

CALVING EASE

Farm employees should assign **calving ease scores** at the time of calving to describe the event. The scoring system is:

- 1 = No problem or unobserved
- 2 = Slight problem
- 3 = Needed assistance
- 4 = Considerable force
- 5 = Extremely difficult
The Council on Dairy Cattle Breeding calculates two **Calving Ease Summaries** for the National Association of Animal Breeders (NAAB):

- **Service Sire Calving Ease** measures a bull’s tendency to sire calves that are born easily.
- **Daughter Calving Ease** measures the influence of the sire of the cow on calving ease.

STILLBIRTH

It is recommended that farm employees record **stillbirth scores** to provide accurate calf mortality information. The scoring system is:

1. **1** = the calf was born alive and was alive 48 hours postpartum
2. **2** = the calf was born dead
3. **3** = the calf was born alive but died within 48 hours postpartum

Daughter Stillbirth measures the ability of a particular cow (daughter) to produce live calves.

Service Sire Stillbirth measures the tendency of calves from a particular service sire to be stillborn more or less often.

Stillbirth evaluations are expressed as percent stillbirths in heifers (%SBH), where stillborn calves are those scored as dead at birth or born alive but died within 48 hours of birth.

INBREEDING

Inbreeding can decrease mature equivalent (ME) milk production by 60 to 80 pounds per lactation for each percent increase in inbreeding.

Consequences of inbreeding include:

- Decreased general vigor
- Decreased reproductive performance
- Increasing similarity between animals
- More recessive genes exposed
- Decreased production
- Increased calf mortality
- Smaller mature size
- Slower growth rate

UNDESIRABLE RECESSIVE TRAITS

Undesirable recessive traits in **Brown Swiss** cattle are:

- Weaver
- Spinal Dysmyelination

Undesirable recessive traits in **Holsteins** include:

- Bovine Leukocyte Adhesion Deficiency
- Bulldog
- DUMPS
- Hairless
- Imperfect Skin
- Pink Tooth (Porphyria)
- Brachyspina
- Complex Vertebral Malformations
- Dwarfism
- Haplotype for Cholesterol Deficiency
- Mule-Foot (Syndactylysm)
- Prolonged Gestation

Undesirable recessive traits found in **Jerseys** are:

- Limber Legs
- Rectovaginal Constriction

Undesirable recessive traits have **not been documented** for the Ayrshire, Guernsey, or Milking Shorthorn breeds.
Chapter 12: Animal Health

ACRONYMS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLV</td>
<td>Bovine Leukosis Virus</td>
</tr>
<tr>
<td>BRSV</td>
<td>Bovine Respiratory Syncytial Virus</td>
</tr>
<tr>
<td>BSE</td>
<td>Bovine Spongiform Encephalopathy</td>
</tr>
<tr>
<td>BVD</td>
<td>Bovine Virus Diarrhea</td>
</tr>
<tr>
<td>DA</td>
<td>Displaced Abomasum</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-Linked Immunosorbent Assay</td>
</tr>
<tr>
<td>FARAD</td>
<td>Food Animal Residue Avoidance Databank</td>
</tr>
<tr>
<td>IBR</td>
<td>Infectious Bovine Rhinotracheitis</td>
</tr>
<tr>
<td>Ig</td>
<td>Immunoglobulin</td>
</tr>
<tr>
<td>IM</td>
<td>Intramuscular</td>
</tr>
<tr>
<td>IV</td>
<td>Intravenous</td>
</tr>
<tr>
<td>MLV</td>
<td>Modified Live Virus</td>
</tr>
<tr>
<td>NAHMS</td>
<td>National Animal Health Monitoring System</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>VFD</td>
<td>Veterinary Feed Directive</td>
</tr>
</tbody>
</table>

NORMAL STATS FOR DAIRY ANIMALS

Temperature
- **Calf:** 102.5°F
- **Adult dairy cow:** 101.5°F

Pulse rate (cow): 60 – 70 heart beats per minute

Respiratory rate (cow): 30 breaths per minute

ANATOMY AND PHYSIOLOGY

Physiology is the branch of biology that deals with the process, activities, and phenomena of life and living organisms.

The **basic tissues** that make up a cow’s body are connective, epithelium, muscle, and nerve.

The **organ systems** found in the body are:
- Circulatory
- Nervous
- Reproductive
- Respiratory
- Digestive
- Skeletal
- Integumentary (skin)
- Endocrine
- Skeletal
- Muscular

An **enzyme** is a protein that acts as a catalyst in starting or speed up specific chemical reactions.

Insulin is a hormone produced by the pancreas that promotes cell growth and division.

The **parathyroid gland** is responsible for mobilizing calcium from the bone.

Phagocytosis is the process by which white blood cells engulf microorganisms.

Ligaments connect one bone to another bone; **tendons** connect a muscle to a bone.

The **mitochondrion** is known as the powerhouse of the cell because all energy is produced in this cell part.
BLOOD

Approximately 400 pounds of blood are pumped through the udder to produce one pound of milk. The external pudic artery is the major artery supplying blood to the udder. Erythrocytes are more commonly known as red blood cells. They are the only cells that have no nucleus.

DISEASE

A disease is a change in the normal state of the body, or one or more of its organs, which disturbs the proper performance of body functions.

A pathogen is any microorganism that causes disease.

Antibodies (immunoglobulins) are proteins synthesized by organs of the cow’s immune system that aid in the elimination of foreign substances such as microorganisms.

The main immunoglobulin isotypes are IgA, IgE, IgG, and IgM.

A carrier is an animal that is infected with a disease but has no clinical symptoms.

A toxin is a poison produced by microorganisms that kills cells.

Diseases can be classified on the basis of their primary cause:

- Environmental
- Genetic
- Infectious
- Metabolic

Infectious diseases of cattle result from the interplay between three factors:

- The animal and its ability to resist disease (immunity)
- An infectious agent (bacteria, viruses, and parasites)
- The environment

Diseases in dairy cattle that are caused by a virus include:

- Blue tongue
- BLV
- BRSV
- BVD
- Cow pox
- IBR
- PI-3
- Warts

Diseases caused by a clostridial organism include:

- Blackleg
- Malignant edema
- Overeating disease
- Tetanus

Examples of metabolic diseases are:

- Displaced abomasum
- Ketosis
- Laminitis
- Milk fever
- Retained placenta

Diseases with a color in their name include:

- Blackleg
- Blue tongue
- Pinkeye
- Red nose
- Red water
- White heifer disease
- White muscle disease

Zoonoses are diseases and infections that are transmitted between vertebrate animals and human beings. Zoonoses that may be transmitted from cattle to humans include:

- Brucellosis
- Cowpox
- Cryptospirosis
- Leptospirosis
- Listeriosis
- Q-fever
- Rabies
- Ringworm
- Salmonellosis
- Tuberculosis

Biosecurity describes management practices that protect the herd from the entry of new diseases and minimize the spread and/or adverse effects of diseases in the herd.
PROPER AND COMMON DISEASE NAMES

<table>
<thead>
<tr>
<th>Proper Name</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetonemia</td>
<td>Ketosis</td>
</tr>
<tr>
<td>Bovine spongiform encephalopathy</td>
<td>Mad cow disease</td>
</tr>
<tr>
<td>Brucellosis</td>
<td>Bang’s disease</td>
</tr>
<tr>
<td>Displaced abomasum</td>
<td>Twisted stomach</td>
</tr>
<tr>
<td>Dystocia</td>
<td>Calving difficulty</td>
</tr>
<tr>
<td>Fibropapellomatosis</td>
<td>Warts</td>
</tr>
<tr>
<td>Hypocalcemia</td>
<td>Milk fever</td>
</tr>
<tr>
<td>Infectious bovine keratoconjunctivitis</td>
<td>Pinkeye</td>
</tr>
<tr>
<td>Infectious bovine rhinotracheitis</td>
<td>Red nose</td>
</tr>
<tr>
<td>Laminitis</td>
<td>Founder</td>
</tr>
<tr>
<td>Listeriosis</td>
<td>Circling disease</td>
</tr>
<tr>
<td>Papillomatous digital dermatitis</td>
<td>Hairy heel warts</td>
</tr>
<tr>
<td>Paratuberculosis</td>
<td>Johne’s disease</td>
</tr>
<tr>
<td>Parturient paresis</td>
<td>Milk fever</td>
</tr>
<tr>
<td>Pneumonic pasteurellosis</td>
<td>Shipping fever</td>
</tr>
<tr>
<td>Pododermatitis</td>
<td>Foot rot</td>
</tr>
<tr>
<td>Traumatic gastritis</td>
<td>Hardware disease</td>
</tr>
</tbody>
</table>

ACIDOSIS

Acidosis is a metabolic disorder that often occurs when a dairy cow eats too much grain.

BLACKLEG

Blackleg is an acute, fever producing disease of cattle and sheep.

The bacterium *Clostridium chauvoei* causes the disease.

Blackleg most often occurs in pastured cattle during the spring or fall.

BLOAT

Bloat is the condition when a cow cannot belch.

Cows grazing rapidly growing legumes are susceptible to bloat.

Gases associated with bloat are carbon dioxide and methane.

Poloxolene may be administered to prevent or correct bloat.

Simple laundry detergent can be used to alleviate bloat in cattle.

A trocar is an instrument used to puncture the rumen in cases of bloat.
BOVINE LEUKOSIS VIRUS

Bovine Leukosis Virus (BLV) is a retrovirus that infects lymphoid tissue. The virus is transmitted to cattle mainly by direct exposure with infected blood, saliva, semen, and milk.

Signs of BLV infection include:
- Tumors in lymphoid tissues
- Weight loss
- Fever
- Rear limb weakness or paralysis
- Gastrointestinal obstructions
- Enlarged lymph nodes
- Decreased milk production
- Loss of appetite
- Protruding eyeballs
- Increased blood lymphocytes counts

BRUCELLOSIS

Brucellosis (Bang's disease) is caused by a bacterium of the genus *Brucella*. Infections may cause:
- Abortions
- Stillborn or weak calves
- Retained placentas
- Weight loss
- Reduced milk yield

The milk ring test is used to identify Brucellosis in cattle.

Undulant fever is the human equivalent of brucellosis. Drinking raw milk contaminated with *Brucella* bacteria is the means of contracting the disease.

COCCIDIOSIS

Coccidiosis is a disease in calves that is also very common in poultry and is characterized by chronic diarrhea.

Signs of coccidia in calves include:
- Watery scours with flakes of blood
- Mucus in the feces
- Weight loss
- Dull listlessness
- Dehydration

Methods to control coccidiosis include:
- Accurate diagnosis and monitoring
- Limit stress
- Maintain sanitation
- Medicate

There are two classes of anti-coccidial drugs.
- Coccidiocides kill coccidia as they migrate through the intestine, interrupting the organism’s life cycle.
- Coccidiostats inhibit the coccidia’s growth and development, preventing them from reproducing.

CRYPTOSPIROSIS

Cryptosporidium parvum is a protozoan parasite that has been recognized as a common cause of diarrhea in calves and other animals, including humans.

Management practices that can reduce cryptosporidiosis in newborns include:
- Provide clean, dry areas for cows to calve
- Feed colostrum using a clean bottle and sanitized nipple
- Provide clean, dry pens for calves
- Allow pens to thoroughly dry between calves
- Feed and care for sick calves last
DISPLACED ABOMASUM

A **displaced abomasum** is the condition where the abomasum moves positions inside the body cavity and twists, causing severe digestive problems.

Most displaced abomasums are **left-sided** (80-90%).

Predisposing factors for a cow’s displaced abomasum include:
- Acidotic rations
- Advanced pregnancy
- High milk production
- Hypocalcemia
- Lack of exercise
- Lead feeding
- Selenium deficiency
- Stress of calving

FAT COW SYNDROME

Fat cow syndrome is a disease when a cow gains too much weight during late lactation or the dry period.

The disease is almost always **associated with other problems** at calving including:
- Displaced abomasum
- Fatty liver syndrome
- Mastitis
- Metritis
- Milk fever
- Retained placenta

GRASS TETANY

Grass tetany is a metabolic disorder associated with a magnesium deficiency.

The disorder occurs most often in adult cows milking heavily and grazing lush green pastures.

HARDWARE DISEASE

Hardware disease is the general term used to describe a situation where a piece of metal has been swallowed and then collects in and/or pierces the reticulum.

A **magnet** is often given to an animal to prevent hardware disease.

HEAT STRESS

The **ideal environmental temperature range** for dairy cattle is 25 to 65°F.

A dairy cow can lose **body heat** through convection, conduction, radiation, and evaporation.

Methods used to cool cows during **heat stress** include:
- Shade
- Access to water
- Air exchange
- Air movement
- Sprinkle

JOHNE’S DISEASE

Johne’s disease is caused by the bacterium *Mycobacterium paratuberculosis*, which infects the small intestine of ruminant animals, especially cattle, sheep, and goats.

Cattle with Johne’s disease are usually **infected** soon after birth, but the first **symptoms** do not appear until 2 to 4 years of age.

Clinical symptoms of Johne’s disease:
- Diarrhea
- Soft swelling in the jaw
- Weight loss
- Death
- General unthriftiness
- Substantial drops in milk production
- Susceptibility to other problems such as infertility

Types of tests for Johne’s disease commonly used today are:
- Tests that measure antibodies in blood serum
- Tests that find the organism in manure by fecal culture or polymerase chain reaction (PCR)
No effective treatment can be recommended for Johne’s disease. Therefore, producers must concentrate on preventing new infections. **Strategies for preventing** new Johne’s disease infections include:

- Prevent highly susceptible newborn calves and young animals from ingesting manure from adults, whether from the dam, the environment, or feed and water.
- Calving areas should be dry, free of manure, and well bedded.
- Remove the calf from the dam immediately after birth.
- Do not use the same equipment to clean up manure and to load feed.
- Do not walk in feed bunks.
- Identify and remove infected animals and their manure.
- Investigate all animals considered for purchase, and buy only from test-negative herds with no history of Johne’s disease.
- Do not allow test-positive cows to calve.
- Sell at birth all calves from positive cows.

KETOSIS

Ketosis (Acetonemia) is a condition when there is an accumulation of ketones in the body. The first signs of ketosis are:

- Cow goes off feed
- Ketone (acetone) smell on the cow’s breath

Propylene glycol is fed or administered to cows to treat ketosis. **Niacin** may be added to feeds to aid in the prevention of ketosis.

LAMENESS

A cow may experience **lameness** for many reasons including:

- Abscess
- Foot rot
- Infection
- Injury
- Soft sole syndrome
- Trimming too close

The most important practices for the reduction of foot problems are **hoof trimming** and **footbaths**. The purposes of a footbath are:

- Remove irritants from the foot and between the toes
- Disinfect and cleanse the foot
- Dry and toughen the foot

Substances commonly used in a footbath include copper sulfate, zinc sulfate, and formalin. The most common walk-through treatment for foot rot is a 5% solution of copper sulfate.

MAD COW DISEASE

Mad Cow Disease (Bovine Spongiform Encephalopathy) is a fatal brain disease of cattle; it affects the brain and spinal cord. The disease originated in the **United Kingdom**.
MILK FEVER

Milk fever is caused by a deficiency of blood calcium related to an imbalance of calcium, phosphorus, and Vitamin D.

Most cases of milk fever occur within 72 hours after calving.

About 6 percent of dairy cows are affected by milk fever each year.

Groups of cows that are at greater risk of having milk fever are older cows, fatty liver cows, and Jerseys.

Symptoms of milk fever include:
- Cow goes down
- Rapid heart rate
- Dilated eyes
- Below normal body temperature

Calcium glutamate is an intravenous injection for immediate and temporary treatment of milk fever.

MYCOTOXINS

A mycotoxin is a toxin produced by a fungus, especially a mold.

Members of the mycotoxin family that affect animals include:
- Aflatoxin
- Trichothecenes
- Zearalenone
- Fumonisn
- Ochratoxins
- Ergot alkaloid

Clinical symptoms of mycotoxins in dairy cattle include:
- Abortions
- Cystic ovaries
- Feed refusal
- Gastrointestinal upsets
- Infertility
- No milk
- Poor response to therapy
- Silent heats
- Unthriftiness
- Weight loss
- Rise in metabolic disease due to liver malfunction

NEOSPOROSIS

Neosporosis is a disease that causes abortions and occasionally causes birth of weak “dummy” calves that have serious brain infections.

A protozoan, Neospora caninum, causes the disease.

Dogs are classified as a definitive host for the causative organism.

PARASITES

External parasites in dairy cattle include flies, lice, mites, mosquitoes, and ticks.

Lice are most troublesome during winter and spring.

Types of flies commonly found around the dairy farm are:
- House fly
- Stable fly
- Horn fly
- Face fly
- Heel fly
- Deer fly

The face fly spreads pinkeye.

The heel fly is associated with grubs or warbles in cattle.

House and stable flies need heat, moisture, and a suitable breeding medium to survive and reproduce.

The phases of a fly’s life cycle are:
- Egg
- Larvae
- Pupa
- Adult

Sanitation is the most effective management tool to control flies on a dairy farm.
Internal parasites in dairy cattle include:
- Lung worms
- Round worms
- Stomach worms
- Liver flukes
- Coccidia

The brown stomach worm is the most economically detrimental parasite of cattle.

Anthelminthics are a class of chemicals used to kill internal parasites.

PINKEYE

Pinkeye is a highly contagious disease characterized by an infection of the cornea or membrane lining of the eye; it is most prevalent during the summer. The primary infectious agent is *Moraxella Bovis*, a bacterium.

Measures for preventing pinkeye include:
- Fly control
- Vaccination
- Clipping pastures to prevent seed-head development

PNEUMONIA

Predisposing causes of pneumonia in calves include:
- Poor ventilation
- Dirty pens
- Overcrowding
- Drastic temperature changes
- High humidity
- Poor nutrition
- Wide range of ages in one pen

Types of organisms that can cause pneumonia are:
- Bacteria
- Molds
- Parasites
- Viruses
- Yeasts

Pneumonia-causing bacteria include:
- *Pasteurella multocida*
- *Haemophilus somnus*
- *Mannheimia* (Pasteurella) *haemolytica*
- *Mycoplasma* species

Pneumonia-causing viruses include:
- Infectious bovine rhinotracheitis virus (IBR)
- Parainfluenza-3 virus (PI3)
- Bovine viral diarrhea virus (BVDV)
- Bovine respiratory syncytial virus (BRSV)

RABIES

Rabies is a deadly viral infection that is mainly spread by infected animals.

Suspected cases of rabies are confirmed by:
- Fluorescent antibody test of brain
- By injecting brain tissue into mice and observing

Non-domestic animals that can cause an infection of cattle with rabies include:
- Bat
- Bobcat
- Coyote
- Fox
- Raccoon
- Skunk

RINGWORM

Ringworm is a contagious disease caused by a fungus that can be easily spread to other animals. The fungus infection invades the hair follicles and the outer layer of skin.

Tincture of iodine may be used to control ringworm.
SCOURS

Scours is a disease in calves characterized by diarrhea, dehydration, and unthriftiness. It is easily transferred from one animal to another through the manure of an infected animal.

Bacteria that commonly cause scours among calves include Escherichia coli, Salmonella, and Clostridium perfringens.

Viruses that commonly cause scours among calves include Rotavirus and Coronavirus.

Protozoa that commonly cause scours among calves include coccidia and Cryptosporidium.

SHIPPING FEVER

Shipping fever is a respiratory disease that cattle often develop after being transported by truck or rail.

UDDER EDEMA

Udder edema is a condition that exists when an excessive amount of lymph accumulates between the skin and secretory tissue of the udder.

WARTS

Warts are caused by a virus and are contagious to other calves.

WHITE MUSCLE DISEASE

White muscle disease is caused by a deficiency of Vitamin E and/or selenium. The best way to prevent the disease is to supplement Vitamin E and selenium.

MORBIDITY VS. MORTALITY

Morbidity rate is the number of sick animals during a specified period of time. Mortality rate is the number of dead animals during a specified period of time.

VACCINATIONS

Calfhood vaccinations should be considered for the following diseases:

- Blackleg
- Clostridia
- Malignant edema
- Brucellosis
- IBR
- PI-3
- BVD
- Leptospirosis
- Scours

The major types of vaccines are killed and modified live.

ANTIBIOTICS

Antibiotics are chemical agents given to animals that kill or stop growth of bacteria. A cow may be given antibiotics in numerous ways including:

- Intramuscular injection
- Intravenous injection
- Intramammary infusion
- Intrauterine infusion
- Intraperitoneal injection
- In the ration

The jugular vein is the ideal location for most intravenous injections.
Suitable items for a medicine chest for the average herd include:

- Alcohol
- Bloat remedy
- Scissors
- Petroleum jelly
- Syringe and needles
- General use disinfectant
- Teat and udder ointments
- Soap
- Sterile bandaging material
- Iodine solution
- Adhesive tape
- Trocar and canula
- Wash basin

A balling gun is an instrument used to give an animal a pill.
Chapter 13: Nutrient Management

ACRONYMS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMP</td>
<td>Best management practices</td>
</tr>
<tr>
<td>CAFO</td>
<td>Concentrated animal feeding operation</td>
</tr>
<tr>
<td>CNMP</td>
<td>Comprehensive nutrient management plan</td>
</tr>
<tr>
<td>EQIP</td>
<td>Environmental Quality Incentive Program</td>
</tr>
<tr>
<td>IPM</td>
<td>Integrated pest management</td>
</tr>
<tr>
<td>NPS</td>
<td>Non-point source</td>
</tr>
</tbody>
</table>

WATER

Groundwater is water in the soil. It may resurface in a brook, stream, or pond. Water in drinking water wells is from groundwater.

Surface water is water in any exposed body of water including streams, rivers, ponds, lakes, and oceans.

The leading environmental issues facing farmers are phosphorus (P) and nitrogen (N) contamination of ground and surface water.

Runoff is the movement of nutrients across the surface of soils to surface water (streams, rivers, ponds).

Leaching is the movement of nitrate (a nitrogen containing compound) through soils to groundwater.

Well-managed alternative water sources usually provide animals cleaner water and help prevent exposure to certain diseases.

MANURE

Manure storage allows manure to be applied according to crop needs rather than on a daily basis.

Types of storage facilities for manure are:

- Solid manure storage – dry stack barn
- Slurry manure storage – anaerobic pit, earthen structure, or above ground tank
- Liquid manure storage – lagoon

Slurry manure storage is the most common type of manure storage on dairy farms.

General categories of odor-controlling chemicals for manure management are:

- Masking agents
- Odor counteractants
- Enzymatic products

Manure testing (measuring nutrient content) may reduce fertilizer purchases and/or prevent application of nutrients in excess of crop requirements.

Factors that affect the nutritive value of manure are:

- Amount of added feed, bedding and water
- Crop
- Method of collection
- Soil characteristics
- Type of feed ration
- Climate
- Method of application
- Method of storage
- Time of application
NON-POINT SOURCE POLLUTION

Non-point source usually refers to pollution (nutrients, chemicals, toxins or pathogens) that contaminate ground or surface water. Non-point source pollution originates from multiple and diffuse sources which are not readily identified. Examples of nonpoint sources of nutrient pollution include most farms, agricultural cropland, and suburban lawns receiving fertilizer.

BEST MANAGEMENT PRACTICES

Best management practices (BMP's) are practices that protect water quality while improving profitability of the farm. The Soil and Water Conservation District (SWCD) is a local board that defines priority watersheds, approves conservation plans, and distributes cost share funds to farmers for implementation of BMP’s. Cost-share is a financial incentive from the state or federal government to the farmer to help pay for equipment or practices that reduce pollution.

Best management practices for livestock farms include:
- Fencing animals out of bodies of surface water
- Installation of an alternative water source
- Installation of stream crossings
- Installation of buffer strips between cropland and surface water
- Shoreline or creek bank stabilization and protection
- Animal travel lane stabilization
- Rotational loafing lot management system
- Installation of a storm water retention pond
- Planting small grain cover crops
- Installation of a manure storage facility
- Manure testing
- Controlling surface water runoff
- Implementation of a nutrient management plan

Buffer strips are areas of grassland installed between cropland or feedlots and waterways to take up nutrients and prevent nutrients from running off into water.

Benefits of small grain cover crops include:
- Increase use of land applied nutrients
- Stabilize cropland
- Prevent erosion in wintertime

The rotational loafing lot management system consists of vegetated exercise and rest areas installed to replace dirt exercise lots. Its benefits are:
- Runoff is reduced because grass growing on lots uses nutrients
- Soil erosion is reduced because grass growing on lots stabilizes soil
- Cows stay cleaner

Methods of reducing soil erosion include:
- Contour cropping
- Soil seeding
- Cover crop
- Strip cropping
- Grass waterways
- Terracing
- Reduced tillage
- Wind breaks
BEDDING MATERIALS

Common dairy cattle **bedding materials** include:

- Newspaper
- Sand
- Shavings
- Recycled manure solids
- Sawdust (green or kiln-dried)
- Straw

NUTRIENT MANAGEMENT

A **nutrient management plan** is a plan for the land application of manure and fertilizer to meet crop needs.

Animal density impacts nutrient management on farms and is usually measured as animal units per acre. An **animal unit** is 1000 pounds of live weight of any animal.

Areas that contribute waste that must be handled are:

- Feeding area
- Housing or loafing area
- Milking parlor
- Holding pen area
- Runoff area

WASTE MANAGEMENT SYSTEMS

The following factors should be considered when planning a **waste management system**:

- **Environmental** (Rainfall, stream location, prevailing winds, evaporation, temperature, topography, soil type, surface drainage, water table depth)
- **Operational** (Herd size, cropping & feeding practices, land area, cropland for waste application, existing buildings & machinery)
- **Economic** (Availability of capital and labor, future expansion plans)
- **Social** (Neighbors, zoning)
- **Legal Requirements** (EPA General Permit, State and local permits)

COMPOSTING

Composting requires **air**, **moisture**, **nutrients**, and **carbon**.

Composting is an acceptable way of disposing of dead calves and cows. Two to six months are required for composting depending on the size of the animal and the rate of the compost reaction.

Advantages of composting manure include:

- Reduces volume
- Reduces potential for nutrient runoff
- More uniform than manure
- Excellent soil conditioner
- Doesn’t attract flies and insects
- Weeds and pathogens destroyed
- Reduces fertilizer needs

FERTILIZER

Fertilizer labels have three important numbers.

- The first number is the amount of **nitrogen** (N).
- The second number is the amount of **phosphate** (P₂O₅).
- The third number is the amount of **potash** (K₂O).

These three numbers represent the **primary nutrients**: nitrogen (N), phosphorus (P), and potassium (K).

A bag of 15-10-5 fertilizer contains 15 percent nitrogen, 10 percent phosphate, and 5 percent potash.
Appendix: Suggested Reading

